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Canada, H3C 3A7

b Department of Computer Science and Opera-
tions Research, Université de Montréal (Québec)
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Abstract: We present a case study of using machine learning classification algorithms to initialize a
large scale commercial operations research solver (GENCOL) in the context of the airline crew pairing
problem, where small savings of as little as 1% translate to increasing annual revenue by millions
of dollars in a large airline. We focus on the problem of predicting the next connecting flight of a
crew, framed as a multiclass classification problem trained from historical data, and design an adapted
neural network approach that achieves high accuracy (99.7% overall or 82.5% on harder instances). We
demonstrate the usefulness of our approach by using simple heuristics to combine the flight-connection
predictions to form initial crew-pairing clusters that can be fed in the GENCOL solver, yielding a 10x
speed improvement and up to 0.2% cost saving.
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1 Introduction

Airlines need to construct crew pairings to cover their flights. A pairing is a sequence of flights

starting and finishing at a base and satisfying complex collective agreement constraints. For major

airlines which handle more than 10k flights on a weekly basis, this becomes an important and difficult

problem to solve. Efficient solutions are required since savings as low as 1% represent many dozens of

millions saved every year. The complexity of the problem lies in the large number of possible pairings,

and the selection of the set of pairings of minimal cost, which is a large integer programming problem

impossible to solve with standard solvers (Elhallaoui et al., 2005; Kasirzadeh et al., 2017).

In our review of related work, we address some advanced optimization techniques that reduce the

number of variables and the number of constraints to solve it. The main drawback of these techniques,

however, is that they require days to compute, while airlines are often given all the scheduling data

only a few days before having to build the schedule. The objective of this paper is to use machine

learning (ML) techniques to improve the algorithmic efficiency and solve this problem in a more feasible

time horizon. Unfortunately, solving the problem with ML alone seems out of reach. Learning from

previous months’ solutions, the structure of the 10k best flight-connection variables.1 is a complex

object to identify. For each flight, there are a large number of possible followers and very complex costs

and constraints on the sequence of flights in a pairing. Finding these variables with high accuracy for

the solution would require more data than what is available.

We propose to use ML to obtain in a matter of seconds good initial information to start an

operations research (OR) optimizer, thus reducing the solution time by an order of magnitude. The

information provided by ML does not need to be an entirely feasible solution (Elhallaoui et al., 2005).

Consequently, it can contain some weak points, which the OR optimizer can fine tune into a feasible

solution.

We investigate the performance of machine learning algorithms in Section 5 to solve the flight-

connection prediction problem in which the goal is to predict the next flight that an airline crew

should follow in their schedule with only partial information (framed as multiclass classification, cf.

Section 3). We adapt a neural network solution in several ways to improve the accuracy of the predic-

tions: proposing improved feature encodings of the input, reducing the number of classes to predict

using domain-appropriate constraints, and testing solutions that can abstain to make a prediction (cf.

Section 4).

We motivate the above problem in the context of solving the airline crew pairing problem. The idea
is to exploit a large volume of flight data, that is, the existing solution counting thousands of flights over

several months, and apply supervised learning algorithms to build a predictor for the flight-connection

problem, in order to obtain good initial information to speed up an OR optimizer (called GENCOL)

that needs to be run on new schedule data. Using our algorithm, we can process tens of thousands

of flights, in contrast to current techniques reported in the literature. To the best of our knowledge,

finding good initial information with ML algorithms in order to optimize an airline crew schedule of

this magnitude has not been addressed before. As a proof of concept, we propose in Section 6 simple

heuristics to form initial crew-pairing clusters that can be fed in the GENCOL solver, yielding a 10x

speed improvement and up to 0.2% cost saving which would translate in millions of dollars saved for

a large airline.

2 Related work

2.1 Machine learning for scheduling

Priore et al. (2014) provides an overview of the dynamic scheduling for manufacturing systems using

machine learning techniques. The classical problem involving job scheduling is to allocate the time, for

1The following flight that a crew is going to perform after each flight
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each job, for each specific machine, for satisfying a set of predefined constraints. The machine learning

approach uses a set of previous system simulations (as training samples) in order to determine which

rule is optimal for the current system state. The described approaches include a variety of techniques

such as inductive learning, case-based reasoning, support vector machines, reinforcement learning, and

other approaches. Unlike the dynamic scheduling for manufacturing systems, we do not have access to

these predefined constraints, as each airline company has its own collective agreement and we would

like to build a model that can be extended to other airline companies.

Other work has used neural networks (NNs) to solve scheduling problems. Wang et al. (2016)

applies standard NN to predict the anticipated bus traffic, whereas Doherty and Mohammadian (2003)

describes an application of NN to activity scheduling time horizon. These approaches are not used

in combination with an OR optimizer, though, and the flight-connection problem contains a larger

number of classes as well as more complicated constraints to satisfy.

2.2 Previous work on crew pairing

Those problems are known to be quite hard to solve. The complexity of such a problem is due to the

number of variables and constraints involved in the problem definition. In short, they are large-scale

integer programming problems. In the literature, there are two common methods frequently employed:

(i) branch-and-price (B&P) (Freling et al., 2004; Günlük et al., 2005; Brunner and Bard, 2013); and

(ii) Lagrangian relaxation (Ceria et al., 1998; Caprara et al., 1999; Li et al., 2009).

The most prevalent method since the 1990s has been the set covering problem with column genera-

tion inserted in branch-&-bound (see Desrochers and Soumis (1989)). This method, along with others,

is described in a survey on crew pairing problems by Cohn and Barnhart (2003); see also Deveci and

Demirel (2018) for a more recent survey. According to this latest survey, column generation was the

most frequently used approach. We describe the literature in more details in Appendix A.1.

Column generation uses a main problem and a sub-problem. On the one hand, the main problem

shall be referred to as the restricted master problem; here, restricted indicates that we are using a

subset of all possible pairings. The objective function seeks to determine an optimal solution for the

current columns. This problem is solved with the Simplex algorithm. On the other hand, the sub-

problem generates promising pairings that are more likely to improve the solution of the main problem.

In the sub-problem, the constraints of continuity and local constraint ensure that flights in the pairing

will be chained in time and space. Furthermore, rules and collective agreements have to be met as

well; examples include working hours per day, flight duration per day, and the number of days away.

This problem is solved by dynamic programming.

To reduce the number of constraints considered simultaneously, the work reported by Elhallaoui

et al. (2005) introduced a dynamic constraint aggregation technique that decreases the amount of

the set partitioning constraints in the restricted master problem and reduces the solution time (see

Appendix A.3). This is achieved by combining a few of them as per a correspondence relationship. The

authors outlined a theoretical outline of the dynamic constraint aggregation algorithm. Range et al.

(2014) describe that dynamic constraint aggregation begins with an initial aggregation partition. This

technique aggregates in a single covering constraint each cluster of flights expected to be consecutive

in the optimal solution. The algorithm modifies the clusters dynamically to reach an optimal solution

if some expectations were wrong. In previous work, the initial clusters were constructed with heuristic

rules based on the user’s knowledge.

In this work, we use ML techniques to learn from previous solutions in order to construct clusters

of flights. To produce such initial clusters, we ought to determine which flight-connection variables

are likely to be equal to one. These clusters are not a feasible solution, but the dynamic constraint

aggregation method will repair it with phase 1 and phase 2 of the simplex to reach a good feasible

solution.
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3 Problem setting

3.1 Crew pairing motivation

In our solution method for the overall crew pairing problem (cf. Section 6), we want to provide the

OR optimizer with an initialization which uses a partition of the flights into clusters. Each cluster

represents a sequence of flights with a strong probability to be consecutive in the same pairing in the

solution. To construct each cluster, we will need the following:

• Information on where and when each crew begins the pairing. This makes it possible to identify

whether a flight is the beginning of a pairing;

• For each incoming flight, predict what the crew is going to do next: layover, flight, or end of

a pairing. If it is the second case (flight), then we further predict which flight the crew will

undertake.

Since the end of a pairing depends on the maximum number of days permitted by the airline

company, we will solely rely on this number as a hyperparameter. In other words, there is no need

to predict the end of the pairing. Therefore, with regards to the pairing construction, we propose to

decompose the second task into two sub-tasks. The first is predicting whether the crew will make a

layover; the second is predicting the next flight, under the assumption that the crew will always take

another flight.

On the one hand, layovers are highly correlated with the duration of the connection, although there

is no fixed threshold for the number of hours a crew must stay in an airport to make a layover. On

the other hand, predicting the next flight is a much more complicated prediction problem. Indeed,

for each incoming flight, there may be hundreds of flights departing in the next hour and thousands

of flight codes. We call this the flight-connection problem which is the focus of our ML approach

described in the next sections.

3.2 Flight-connection prediction dataset

We obtained several months of historical crew pairing data from an anonymous airline company cov-

ering approximately 200 cities and tens of thousands of flights per month. We will transform this

data to build a flight-connection prediction subproblem (a multiclass classification problem) where the

goal is to predict the next flight that an airline crew should follow in their schedule given only partial

information about the beginning of their schedule. To avoid error propagation through the whole

sequence of flights (and because the OR solver is able to use partially correct plans), we will only use

information about the crew’s incoming flight (we will not use earlier information in the pairing) to

predict the next flight.

The classification problem is thus the following: given the information about an incoming flight

in a specific connecting city, choose among all the possible departing flights from this city (which can

be restricted to the next 48 hours) the one that the crew should follow. These departing flights will

be identified by their flight code (about K=2k possible flight codes in our dataset, K will represent

the number of classes). Different flights may share the same flight codes in some airline companies,

as flights performed multiple times a week usually use the same flight code. Nevertheless, a flight is

uniquely identified by its flight code, departing city and day; information which in practice can be

deduced from the information about the incoming flight and our 48 hours window.

Each flight will give the following 5 features that we can use in our classification algorithm:

• City of origin and of destination (∼200 choices);

• Aircraft type (5 types);

• Duration of flight (in minutes)

• Time (with date) of arrival (for an incoming flight) or of departure (for a departing flight).
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Our transformed dataset contains about 300k flight prediction examples (organized in different

months), giving for each example these features for both the incoming flight as well as the possible

departing flights from the same city. This dataset is used for training and validation. We keep

a separate 10k flights for testing which are derived from a different weekly crew pairing schedule.

Appendices B.1 and B.2 contain more details about the pre-processing.2

4 Algorithms

In this section, we describe the different methods and models that we investigated to solve the flight-

connection problem.

4.1 Basic Neural Network (NN) model

As neural networks have shown great potential to extract meaningful features from complex inputs

and obtain good accuracies through different classification tasks, we propose to use them and compare

their results with classical machine learning methods. In both cases, the input contains information

on the previous flight as well as the next departing flight. For more information on the features used

in the input, see Appendix B.1.

We use a standard neural network with two dense hidden layers, each with 1,000 neurons and relu

as the activation function. The output layer is another dense layer with K=2k neurons and softmax

as the activation function. We use K neurons in the output layer because we want to predict the flight

code. We also use dropout (Srivastava et al., 2014) with a probability of 0.2 to prevent over-fitting as

well as batch normalization (Ioffe and Szegedy, 2015) between the activation function and the dropout.

4.2 Adding an embedding layer

The city code and aircraft type features mentioned in Section 3.2 are categorical features which are

simply treated as numeric values in our basic NN model. This means that cities with nearby codes

are treated similarly by the NN even though the codes are somewhat arbitrary. A more meaningful

encoding for the different categorical features is to use a one-hot encoding. By fully connecting each

one-hot encoding of a categorical feature to a separate hidden layer, we basically get an embedding

layer of dimension d for this feature (d is a hyperparameter). The C × d parameter matrix (where C

is the number of possible categorical values) represents the d-dimensional encoding for each of the C
values, and this encoding is learned during the NN training. The embedding layer approach thus learns

a d-dimensional representation of each city, and one could explore which city is similar to another one

in this space. By concatenating the embedding layer for each categorical features with the other

numeric features (such as hours and minutes), we get an nd-vector, where nd is the dimensionality of

the representation of one flight that is fed into the NN. For the results given in Table 3, we feed the

NN with the concatenation of the nd encoding of the incoming flight as well as the first next flight

(using more next flights did not improve results but just took longer to learn).

4.3 Evaluation metrics

We now present the evaluation metrics that we will consider; the feasibility one will motivate further

model refinements described next.

• Categorical accuracy:

1

n

n∑
i=1

1{arg max
j

(yi,j) ∈ arg max
j

(pi,j)} (1)

where i is the sample index, j refers to the class index, and yi,· denotes the sample label encoded

as a one-hot vector. pi,j is the classifier score for class j for input i.

2The code and the dataset are available at: https://www.gerad.ca/fr/papers/G-2019-26

 https://www.gerad.ca/fr/papers/G-2019-26 
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• top-k categorical accuracy:

1

n

n∑
i=1

1{arg max
j

(yi,j) ∈ top-kj(pi,j)} (2)

• Different aircraft accuracy: Throughout the months, in 88% to 95% of the instances, the crew

arrives at an airport and follows the aircraft, i.e. takes the next departing flight that the same air-

craft makes (note that the classifier cannot know which next flight uses the same aircraft though

as we removed this information). To consider more difficult next-flight prediction instances, we

therefore report the accuracy only on the instances where the crew changes aircraft.

• Feasibility: Given that the aircrew arrived at a specific airport at a given time, we can use a

priori knowledge to define which flights are possible. For example, as shown in Figure 1, it is

neither possible to make a flight that starts ten minutes after the arrival, nor it is possible five

days later. Furthermore, it is rare that the type of aircraft changes between flights since each

aircrew is formed to use one or two types of aircraft at most. The reader is referred to (Kasirzadeh

et al., 2017) for further details on the likelihood of these scenarios. We describe in Appendix B.3

a simple short list of conditions that are always satisfied for the next flight taken by the crew,

and we define a mask mi,j = 1 only when flight j satisfies these conditions for input i, and 0

otherwise. For the basic classifiers, we can evaluate the proportion of time they predict a feasible

next flight with the “feasibility” metric:

1

n

n∑
i=1

1{arg max
j

(pi,j) ∈ arg max
j

(mi,j)} (3)

Ingoing flight

Outgoing flight

Airport

(a) Different possibilities for an incoming flight

Time

Ingoing flight

Allowed flight

Disallowed flight

Airport

(b) Different feasible possibilities for an incoming flight

Time

Figure 1: Illustration of an incoming flight scenario

4.4 Masked output neural network

To reduce the number of possible outputs, we can use the feasibility function mi,j to restrict our

classifier to only predict a class among the feasible next flights for a specific incoming flight i. We

can use such a mask to define a new output layer Lm, such that in the output layer, for the softmax

function, we only take into account the probabilities for the feasible next flights.

4.5 Transformed classification problem

By using the feasibility information about next flights, we can design a more useful encoding for the

output classes by normalizing their representation across different instances.

Therefore, for each incoming flight, we consider all departing flights in the next 48 hours as a

set. Then, we consider only those that are feasible according to our masking constraints (defined in
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Appendix B.3) to filter this set. Then, we sort these flights based on the time of departure and limit

the maximal number of possible flights to 20, as it is sufficient in the airline industry. Thus, we predict

the rank of the true label among that set with a 20-dimensional softmax output layer.

We use the embedding layer described earlier to construct a feature representation for each of these

20 flights. Then, we concatenate them to have a matrix nd× 20 input for the next layers, where nd
is the embedded representation of information on one flight. Consequently, we do not only reduce

the number of possible next flights but also construct a similarity-based input, where the neighboring

factors have similar features, which in turn allows the usage of convolutional neural networks. The

intuition here is that we can consider each next flight as a different time step, enabling the use of

convolutional architecture across time (Hatami et al., 2018; Borovykh et al., 2017).

4.6 Post-processing step: Abstention methods

Instead of taking all the predictions into account, it is preferable in our case to discard a percentage

of these predictions to enhance accuracy. We consider augmenting our classifier with an “abstain”

option (Nadeem et al., 2009). Since the OR solver takes more time to break a connection in a cluster

(links) than to build one, removing low confidence links (flights) using this “abstain” option can be

advantageous. We observed that our solver is able to carry out the optimization problem much faster

when taking into account 99% of our predictions instead of 100% (see Appendix A.3 for the OR solver

description). We describe below three abstention methods that we investigated in our experiments

(Section 5.3.4).

4.6.1 Abstain when low confidence

The simplest abstention technique would be to ignore the samples whose winning class confidence falls

below a certain threshold. Indeed, Hendrycks and Gimpel (2017) show that the lower the softmax

probability of the most probable class, the greater the likelihood that the prediction is incorrect.

Therefore, we use a threshold for the probabilities given by the NN. We also consider an RBF kernel

SVM, to which we give as input the probabilities given by the NN, as well as the rectangular input

of the NN, where the categorical features are one-hot encoded. The binary label is 1 when the NN

predicted correctly, 0 otherwise. Once trained, we put a threshold on the probabilities given by the

SVM, exactly as we did for the probabilities given by the NN.

4.6.2 Abstain when high entropy

One issue with the approach of Hendrycks and Gimpel (2017) is that modern neural networks are

often notoriously miscalibrated (Guo et al., 2017). Methods such as temperature scaling (Guo et al.,

2017), can be applied to correct this miscalibration. Unfortunately, even when we consider using

calibration for selective classification, we still encounter problems in the presence of class imbalance

(which is the case in the flight-connection dataset). (Fumera et al., 2000) The idea here, in short, is

that we choose not to predict if the predictive entropy of the output probability vector p (given by

H(p) = −
∑

i pi log pi) is too high. (Hendrycks and Gimpel, 2017) Entropy is an uncertainty measure

that takes into consideration the confidence scores of all the classes, in contrast to the confidence

abstention method described in the previous paragraph which only takes into account the winning

class confidence.

4.6.3 Estimate confidence with dropout

The NN literature considers various techniques to estimate the uncertainty of a prediction. In one

technique, the prediction tasks can be carried N times while applying dropout in the entire layers

of the neural networks (Gal and Ghahramani, 2016), yielding N probability vectors for each test

sample. A rough estimate of certainty of prediction is obtained by computing the mean of these N

probability vectors and subtracting their component-wise estimated standard deviation (computed

from the same N vectors). This gives a rough lower bound on the certainty of our prediction. As in

Section 4.6.1, if the maximum value of these confidences is too low, we decide to abstain.
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5 Experiments

In this section, we illustrate the numerical examples employing the dataset described in subsection 3.2.

Furthermore, this section describes the specifications of the employed hardware and software to realize

the algorithm, in addition to the implementation details, and the main results of the experiments.

5.1 Hardware and software

The experiments were executed on a 40-core machine with 384 GB of memory. Each method is executed

in an asynchronously parallel set up of 2-4 GPUs. That is, it can evaluate multiple models in parallel,

with each model on a single GPU. When the evaluation of one model is completed, the methods can

incorporate the result and immediately re-deploy the next job without waiting for the others to be

finalized. We use four K80 (12 GB) GPUs with a time allocation of 10 hours. All algorithms were

implemented in Python using Keras (Chollet et al., 2015) and Tensorflow (Abadi et al., 2015) libraries.

For classical machine learning methods, we use Scikit-learn (Pedregosa et al., 2011).

5.2 Hyperparameter selection

5.2.1 Random search

As a first phase exploration of the hyperparameters space, we use random search (Bergstra and Bengio,

2012) with k-fold cross-validation on the training set to choose the best hyperparameters for each

method we consider. We use different months for different folds (6 folds) to simulate the more realistic

scenario where we make a prediction on a new time period. We keep the weekly problem of 10k flights

for testing.

5.2.2 Bayesian optimization

After having identified the best predictor with random search, we refine further the choice of hyper-

parameters by using Bayesian optimization with k-fold cross-validation to measure the configuration

quality. Bayesian optimization builds a probabilistic model of the function mapping from hyperpa-

rameter settings to the model performance and provide a systematic way to explore the space more

efficiently (Hutter et al., 2011).

We optimize the hyperparameters listed in Table 1 (Dernoncourt and Lee, 2016) with an imple-
mentation of Gaussian process-based Bayesian optimization provided by the GPyOpt Python library

version 1.2.1 (authors, 2016). In our approach, the optimization was initialized with 50 random search

iterations, followed by up to 450 iterations of standard Gaussian process optimization. Here, the total

return is used as the surrogate function and Expected Improvement (EI) as the acquisition function.

Table 1: Hyperparameters used in optimization

Parameters Search space Type

Optimizer Adadelta; Adam; Adagrad; Rmsprop Categorical
Learning rate 0.001, 0.002, . . . , 0.01 Float
Dimensions of the embeddings 5, 10, 15, . . . , 50 Integer
Number of dense layers 1, 2, 3, 4, 5 Integer
Neurons per layer 100, 200, . . . , 1000 Integer
Dropout rate 0.1, 0.2, . . . , 0.9 Float
Convolutional layers 0, 1, 2, 3 Integer
Filters n 50, 100, 250, 500, 1000 Integer
Filter size h 3,4,5 Integer
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5.3 Results

5.3.1 Classical machine learning methods

Using features described in Appendix B.1, we considered several classical machine learning methods

for our comparison, such as a logistic regression model and Multinomial Naive Bayes methods. As

demonstrated in Table 2, we have non-linear decision boundaries. The data points are not easily

separated by a single hyperplane, this is due to the fact, that the train classification accuracy is

greater than test classification accuracy, in which we are slightly over-fitting the data.

Table 2: Performance of classical machine learning algorithms

Method
Train

accuracy (%)
Test

accuracy (%)
Different aircraft

accuracy (%)
Time (s)

Decision trees 99.99 97.44 61.84 70
One-Vs-Rest Decision trees 99.99 92.66 66.53 320
Logistic regression 11.89 11.71 1.90 1990
Multinomial Naive Bayes 6.61 6.32 0.62 3

5.3.2 Neural networks

After testing with classical machine learning methods, we show results using NN. As speculated, we

can see in Table 3 that the computational effort (CPU training time) of executing the model without

the embedding layer is much higher, and provides a smaller accuracy rate.

When using the mask to guide the gradient descent during training jointly with the usage of the

embedding layer, our model takes less than one-third of the training time and gives a better result put

in comparison with the standalone embedding layer.

Table 3: Comparison of results for different methods

Method
Test

accuracy (%)
Different aircraft

accuracy (%)
Top-3

accuracy (%)
Feasibility

(%)
Time (s)

NN without embeddings 88.03 60.52 98.95 92.25 4000
NN + embeddings 99.11 70.85 99.47 98.68 1850
Masked output NN +
embeddings

99.20 71.24 100 100 500

Transformed input without
convolutional layers

99.18 70.32 100 100 2300

Transformed input with
convolutional layers

99.35 71.79 100 100 700

Transformed input with
convolutional layers (after GP)

99.68 82.53 100 100 600

5.3.3 Gaussian process

We perform the Gaussian process on “Transformed input with convolutional layers” to search for

the best configuration of hyperparameters. After a few iterations, we are able to get an accuracy of

99.35%. Then, random search boosts the total return very quickly up to 99.62% after 18 iterations

and thus remains until the end of the random search cycle (iteration number 50). Using Gaussian

process, we can show that we constantly improve our process of searching for the best architecture

that maximizes the overall return. In our case, we stopped at iteration number 500 with the best

architecture providing an accuracy of 99.68%. One should notice, that there was no limitation that

prevents our algorithmic procedure from exploring, even more, the configuration space; in other words,

the algorithm was stopped manually (see Appendix B.4 for more details). The final training was done

with the best-identified architecture found by Bayesian optimization.
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5.3.4 Abstention

Figure 2 shows the accuracy-abstention tradeoff curves for the abstention methods proposed in Sec-

tion 4.6 on the best architecture on the test set giving a 99.62% accuracy initially; using these methods,

we can discard some of our predictions and enhance the accuracy. For example, if we discard only 1%

of our predictions, the accuracy increases from 99.62% to 99.90% abstaining when low confidence and

to 99.94% estimating confidence with dropout. For the next Section 6, we will use a 1% rejection rate.

98.6 98.8 99.0 99.2 99.4 99.6 99.8 100.0
acceptance (%)

99.6

99.7

99.8

99.9

100.0

100.1
pr

ec
isi

on
 (%

)
dropout
svm

entropy
NN threshold

Figure 2: Results of the different abstention methods. NN threshold and Entropy use probabilities given by the NN.
SVM takes into consideration a confidence score given by a RBF-SVM. Dropout uses the lower confidence bound of the
prediction confidence. For more information on these methods, see Section 4.6

6 Integration of the flight-connection predictor into the crew pair-
ing

GENCOL3 (GENeration de COLonnes) is a commercial toolbox that produces real-world airline crew

scheduling solutions. The toolbox uses column generation as an optimization strategy that allows a

large number of variables to be considered in solving large-scale problems. As more than 20 airlines

companies use GENCOL for their crew scheduling, we explore in this section whether our machine

learning approach can yield gains on this state-of-the-art solver (through private communication with

the company). We describe in more details the column generation approach in Appendix A.2.

Upon the finalization of the flights-connection prediction model, we can use the same architecture

to solve two other prediction problems on the test set (10k flights): (i) predict if each of the scheduled

flights is the beginning of a pairing or not; and (ii) predict whether each flight is performed after a

layover or not. In reality, the three predictors share the same representation. To solve these indepen-

dent classification problems, we sum the three prediction problems’ cross-entropy losses when learning,

therefore performing a multi-output classification.

We use a greedy heuristic to build the crew pairing. Specifically, we consider each flight that the

model predicts at the beginning of a pairing as a first flight. Given this incoming flight, we predict

whether the crew is making a layover or not. In both cases, we consider the incoming flight and predict

the next one. The pairing ends when the crew has arrived at the base and when the maximal number

of days permitted per pairing is approached.

We can use the above heuristic to construct a weekly solution for the testing data, obtaining a crew

pairing that can be fed as an initial cluster for the GENCOL solver. Unfortunately, if one flight in the

pairing is poorly predicted, as the flights are predefined, the crew will finish its pairing away from the

base. Therefore, we consider different heuristics to correct the pairings:

3http://www.ad-opt.com/optimization/why-optimization/column-generation/

http://www.ad-opt.com/optimization/why-optimization/column-generation/
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• Heuristic 1: includes pairings where the crews finish away from the base, but it erases what

occurs after the last time the crew arrives at the base, or deletes the whole pairing if it never

passes to the base again.

• Heuristic 2: deletes all pairings where the crews finish away from the base;

• Heuristic 3: like heuristic 1, erases what occurs after the last time the crew arrives at the base

but also cuts the rotation into smaller ones if we pass multiple times at the base.

As a baseline, we consider a benchmark called “GENCOL init.” which is a standard initial solution

approach obtained with the GENCOL solver. In this approach, the weekly problem is solved by a

“rolling time horizon” approach with one-day windows. This means that the week is divided into

overlapping time slices of equal length (slightly more than one day). Then a solution is constructed

greedily in chronological order by solving the problem restricted to each time slice sequentially, taking

into account the solution of the previous slice through additional constraints.

We can feed the “GENCOL init.” solution to GENCOL as an initial cluster for the constraint aggre-

gation approach to further improve the solution globally, obtaining a solution that we call “GENCOL-

DCA from GENCOL init.” in Table 4. For more information on the constraint aggregation approach,

see Appendix A.3.

As we can see in Table 4, two of the three heuristics that we propose outperform the benchmark

as well as the solution from GENCOL-DCA with GENCOL initialization, and we can conclude that

for the pairings that finish away from the base, it is better to allow the solver to cover the flights than

to propose smaller pairings. Therefore, instead of performing the optimization process for 40 hours to

obtain GENCOL init. and then for another 5 hours to obtain GENCOL-DCA, our proposed method

gives better costs after a few seconds to predict the flight connections, and optimized results after five

to six hours.

Table 4: Final crew pairing costs after running GENCOL-DCA with different initialization clusters

Approach Savings Time of
(%) execution

GENCOL init. 0 40:00
GENCOL-DCA from GENCOL init. 1.21 05:00

GENCOL-DCA from heuristic 1 init. 1.45 06:30
GENCOL-DCA from heuristic 2 init. 1.38 05:00
GENCOL-DCA from heuristic 3 init. 0.97 06:30

We note that the heuristics that we propose to build crew pairings are still limited, even though

they do give better costs in two of the three cases. Further study and experimentation are required to

explore other heuristics to construct the crew pairings. Further study is also needed to solve monthly

problems by rolling horizon with one-week windows. The fast machine learning predictor will permit

to construct in a few seconds clusters for each window of a week, customized according to the flight

schedule of this week. We expect improvements in particular when the monthly schedule is irregular

from week to week. It is the case near every month: Christmas, Easter, Thanksgiving, National

Holiday, Mother and Father days, big sports events, etc. It was out of the question to use five times

40 hours to produce customized clusters for each window with GENCOL init.

7 Conclusion

It is rather difficult to assign the crew workers to a range of tasks while taking into account all

the variables and constraints associated with the process. In this paper, we incorporate different

algorithms and methods, which include neural networks in conjunction with abstention techniques,

such as dropout, in order to prevent overfitting, or masks to ensure guidance of the gradient descent.

These networks allow our solver to achieve high accuracy for the flight-connection problem.
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This paper introduces a new paradigm for solving a large combinatorial problem: “Start with ML

— Finish with OR optimizer”. This paradigm, first, use ML to learn from solutions of similar instances

to produce predictions on some parts of the solution of the new instance. This information feeds the

OR optimizer to finish the work taking account of the exact cost function and the complex constraints.

This approach reduces significantly the solution time without losing on the quality of the solution.

This new paradigm can be applied on many types of problems solved recursively.

A Crew pairing problems and solution methods

We first provide background on the crew pairing problem and standard approaches to solve it. We

then describe the most frequently used approach Deveci and Demirel (2018): Column Generation.

Finally, we present the state-of-the-art dynamic constraint aggregation approach which improves upon

column generation by reducing the number of constraints in the problem and permits to solve large-

scale pairing problems. The commercial solver GENCOL that we use in our experiments uses both

column generation and the constraint aggregation method.

A.1 Crew pairing problem

According to Desaulniers et al. (1997), for each category of the crew and each type of aircraft fleet,

the construction problem of crew pairing finds a set of pairings at minimal cost so that each planned

flight is performed by a crew. The methodology for solving the problem depends on the size of the

airline’s network structure , rules, collective agreements, and cost structure (Yen and Birge, 2006).

Three time-horizons are generally studied: a daily, a weekly and a monthly horizon (Brunner and

Bard, 2013). The daily problem assumes that the flights are identical, or relatively quite similar,

for every day of the planning horizon. The problem also assumes that minimum cost pairings are

generated for flights scheduled for a day. A cyclic solution is produced; that is to say, the number of

crews present in every city in the evening is the same as in the morning. Accordingly, the weekly and

monthly solutions can be produced by juxtaposing the daily solution. When the schedules of flights

are not exactly the same every day, the pairings that do not fit with the flight rules are removed,

as they no longer apply and can be re-optimized to create new pairings covering flights that are not

covered previously. The weekly problem assumes that flights are identical (or somewhat similar) each

week, and the pairing problem is solved for scheduled flights for a typical week.

In the literature, the crew pairing problem has been modeled as a set covering or a set partitioning

problem, in which each column is a constraint associated with each flight and all feasible pairings

are treated as variables (Desaulniers et al., 1997; Qiu, 2012; Kasirzadeh et al., 2017). This model

contains millions of columns that thus do not fit in computer memory. Anbil et al. (1992) introduced a

comprehensive method with a cost-minimization goal. In this collaborative research between American

Airlines Decision Technologies and IBM, numerous possible pairings (columns) were generated as an

a priori and a considerable amount of them is fed into the linear program solver. At every repetition,

several of the non-basic pairs are rejected and new pairs are being inserted. The procedure keeps its

execution until all the pairs have been taken into consideration Qiu (2012).

Current research in the literature indicates that heuristic algorithms have three main shortcomings.

Firstly, they do not consider all scheduled flights simultaneously and must perform many iterations

before they can achieve a solution with a high-quality Baker (1981). Secondly, the algorithms do not

consider all viable pairings (Bianco et al., 1992). Thirdly, the divergence from the optimal solution is

significant, resulting in new solutions which can be far from the global optimal solution (Voß, 1999).

As a result, more sophisticated approaches have been proposed over the years. Scholars introduced the

column generation method containing only a subset of the columns for this problem (Desrochers and

Soumis, 1989); as they solved a set covering problem with a Simplex algorithm and generated columns

by solving a shortest path problem.
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A.2 Column generation method

Column generation is an iterative method that solves, for each iteration, a restricted master problem

and one or numerous sub-problems (Sadykov et al., 2016). Column generation is well-recognized for

resolving relaxation of a (mixed) integer linear program (LP) in a range of applications, particularly

in the fields of crew scheduling and vehicle-routing. For this type of applications, several problems can

be framed as set-partitioning-problem-based integer problems (Bouarab et al., 2017). The reader is

referred to Desrosiers et al. (1984) and Desrosiers et al. (1995), the founding papers of the domain.

When the number of columns is large, to the extent that they are no longer considered at the initial

stage, column generation decomposition can be employed to solve a restricted master problem, that

is, a linear program limited to a subgroup of columns (variables), resulting in a plausible and viable

primal solution, along with dual variables. See (Bouarab et al., 2017) for further details. According to

Bouarab et al. (2017), the dual vector is used by an oracle algorithm. This algorithm resolves one or

several sub-problems, which in turn produces columns with negative reduced costs, and expands the

restricted master problem. The procedure is executed until no more variables with negative reduced

costs can be recognized.

A.3 Constraint aggregation to speed up the column generation

The literature shows that column generation is frequently employed to solve problems comprising of set

partitioning (SP) constraints, like crew-scheduling and vehicle routing problems. Column generation

turns out to be ineffective when the number of constraints is huge and the columns have more than

eight to twelve nonzero elements. This is due to the fact that resolving the restricted master problem

needs excessive solution times resulting from great degeneracy (Bouarab et al., 2017).

In the event of the set partitioning problem, dynamic constraint aggregation and multi-phase

constraint aggregation deal with degeneracy in a different way.

A.3.1 Dynamic constraint aggregation

To address the aforementioned limitation of column generation method, Elhallaoui et al. (2005) in-

troduced a dynamic constraint aggregation technique that decreases the number of set partitioning

constraints in the restricted master problem by aggregating in a single constraint each cluster of tasks

expected to be consecutive in the optimal solution. The algorithm modifies dynamically the clusters

to reach the optimal solution if some expectations were wrong.

Elhallaoui et al. (2005) offered a theoretical outline of the dynamic constraint aggregation algorithm.

On combined bus drivers and vehicle scheduling problems, they obtained time reduction of up to 90%

on the master problem and up to 80 % on the total time. Benchimol et al. (2012) presented an

application of this method on the crew assignment problem. In a few test circumstances, the entire

solution time for the linear relaxation of the problem is decreased by around 80% compared to the

normal column generation technique.

Range et al. (2014) discussed that dynamic constraint aggregation begins with an initial aggregation

partition that may be a feasible solution or not. The initial tasks and constraint aggregation can be

calculated by means of a heuristic solution or by solving an approximation of the problem. Due to its

reduced size, this aggregated restricted master problem is clearly simpler to resolve, put in comparison

with the non-aggregated one.

One major drawback of the dynamic constraint aggregation, as highlighted by Elhallaoui et al.

(2005), is that it does not take the aggregation into consideration when resolving the sub-problem.

Consequently, many variables may be produced, even if there exists a compatible variable with a

negative reduced cost. When this occurs, the partitions which are incompatible are disaggregated, to

permit these variables to enter the aggregated restricted master problem. This increases the size of

the aggregated master problem and slows down the algorithm.
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A.3.2 Multi-phase dynamic constraint aggregation

To decrease the impact of the aforementioned shortcoming, Elhallaoui et al. (2010) offered an enhanced

version of the dynamic constraint aggregation algorithm, named the “multi-phase dynamic constraint

aggregation” algorithm. In this algorithm, a partial pricing strategy, favoring the compatible columns

with the constraint aggregation is employed. In phase k, we add in the subproblem a constraint

forbidding to generate a pairing breaking clusters more than k times. Similar to dynamic constraint

aggregation, the algorithm begins with an initial aggregation partition that is produced from logical

reasoning or a heuristic solution (Saddoune et al., 2012). Such an initial aggregation partition is proper

if its clusters combine components that have a high likelihood of being in a column of an optimum

linear relaxation solution.

The multi-phase dynamic constraint aggregation algorithm is comprised of two kinds of iteration:

(i) major; and (ii) minor ones. A major iteration consequently contains a range of minor iterations and

an update of the aggregation partition. In this update, the partition is disaggregated and aggregated

in line with the situations that are achieved to produce a novel partition (Bouarab et al., 2017). A

minor iteration begins by partly resolving the restricted master problem.

B Reproducibility-related information

B.1 The flight-connection prediction dataset

The data provided by the airline company consists of six months of crew-pairing data for approximately

200 cities and tens of thousands of flights per month. For each month, we are given two files. The first

one considers engine rotations, whereas the second one contains the crew rotations. It is the second

data file that is used in the learning phase and reconstructed during the testing phase.

The dataset considered in this paper consists of approximately 1k different source-destination pairs

and 2k different flight codes. Figure 3 shows the data format for a single pairing. Apart from

this, we know the distance between the two airports is 761 Km, from which we can extrapolate the

duration of the flight, based on an average aircraft flight speed, which is equivalent to roughly 1 hour

and 26 minutes.

O T 1821 0 CC 1 CAT 1 () ”a” ”” 2 456
2018/08/09 2018/09/03 X 2018/08/10 2018/08/20
2018/08/29
{
RPT ;
ABC05914 ORD 1 02:10 BUF;
ABC06161 BUF 1 09:50 ORD;
RLS;
}

Figure 3: Data format for aircrew pairings. Here, this entry describes a pairing that takes place every Tuesday, Thursday,
Friday, and Saturday ( 2 456 ) between August 9, 2018 and September 3, 2018, except for the dates: 08/10, 08/20,
and 08/29. The pairing contains flights between Buffalo Niagara International Airport (BUF) and O’Hare International
Airport (ORD).

Once the dataset is pre-processed, the data shall contain the following information:

• On the crew: ID, departure or connecting city, the date, day, hour, and minute from which the

crew is ready to begin the next flight, worked hours and minutes in this day, and lastly duration

of the shift so far;

• On the connection: Duration in hours and minutes between the previous and the subsequent

flights;

• On the aircraft: Type of the aircraft number corresponding to the aircraft pairing;
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• On the previous flight: This includes code and duration;

• On the next flights: This covers code, next (arrival) city, the date, day, hour, minute and

duration of each one of the flights to follow.

In total, there are 22 features one can use to predict the next flight. However, in practice, it is not

always possible to know each of those features. For example, the time passed on the shift is unknown

if one only considers the previous flight and attempts to predict the next one. This is basically the

case in our particular problem. The same applies for the time worked during the day and the crew

identification. Moreover, one can consider the previous flight as one of the features; however, one

would use the time from which the crew is ready and the departure time of the next flight instead.

In fact, if the method works on the latter, a benchmark can be obtained for new companies where

the classification or the prediction does not necessarily depend on how the flight codes have been

constructed. The benchmark, in this case, would use information on aircraft, time, and cities. This is

quite typical for most airline companies.

Therefore, the prediction model for the next flight takes into consideration the following features:

• Engine and its rotation number.

• The city of origin (departure city).

• The connecting city (arrival city of the previous flight).

• The time taken by the previous flights (duration of the flight).

• The time from which the crew is ready to take a flight arriving at the connecting city, regarding,

day of the year, week, hours, and minutes.

• Information on the next departing flight(s)

When presenting publicly an example of the dataset used during the phase, we begin by encoding

all the available features. These features are encoded from categorical to indexes, which are values

provided for by the dictionary. Eventually, we delete all code flights, city names, year and month

details, and engine specifications.

Even more, our use of an embedding layer makes the rebuilding of the graph infeasible. Indeed,

to find the airline company, one needs to use the numerical codes and information about flight pairs,

bases reconstruction to count the number of flights per base, the number of days and the number of

flights. These numerical codes are not retrievable from the dataset we intend to make public.

The embedding layer turns positive integers (indexes) into dense vectors of fixed size. Technological

advancements in the natural language processing in Artificial Intelligence are based on the application

of dense vectors for the representation of language relations, that is, embedded words for encoding

connections between phrases and words (Mikolov et al., 2013).

Therefore, from our perspective, the flight code encoded to an integer is projected to a hyperspace

having 25 dimensions or more. An advantage of this approach is to anonymize further the dataset,

an important condition to release the dataset in the public domain from our company partners. The

dataset contains the output of the embedding layer, therefore an embedded representation of the input.

We get these representations during the last training epoch with a small tuned learning rate. This way,

the representation of a city is not unique throughout the whole dataset. However, two representations

of the same city are still similar.

B.2 Features representation

For each incoming flight, we use the following features:

• Information on the aircraft: type of the aircraft (categorical)

• Information on the flight: duration of previous flight (numeric, in minutes) and time of arrival

to the connecting city (Date, Day, Hour, Minutes)

• Information on the city: codes of the departure and the connecting city (both categorical)
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Then, for each outgoing flight, we use the same features. The only difference is that we use the

codes of the connecting and arrival city (instead of departure and connecting), the duration of next

flight and time of departure from the connecting city. For each flight, we use a one-hot encoding for

the categorical features. When using the embedding layer, we project each one of these features into

an embedded representation. Then, we concatenate all embedded features with the numeric ones to

create an nd-vector where nd is the embedded representation of information of one flight.

B.3 Filtering conditions to construct the mask

To construct a mask for feasible flights, we use the following conditions:

• The departure time of the next flight should follow the arrival time of the previous flight to the

connecting city;

• The departure time of the next flight should not exceed 48 hours following the arrival time of

the previous flight to the connecting city;

• The departure city of the next flight should be identical to the connecting city in the previous

flight;

• The aircraft type should be the same. Indeed, crew scheduling is separable by crew category and

aircraft type or family (Kasirzadeh et al., 2017).

It would have also been interesting to consider the aircraft pairing number, which indicates the

routes of different aircraft. This, however, is not considered in our case.

B.4 Hyperparameter space and search

We list below the hyperparameters that are considered during our initial random search phase for the

different learning methods:

• Decision trees and One-Vs-Rest Decision trees:

– criterion ∈ { gini, entropy };
– splitter ∈ { best, random };
– max depth ∈ { 2, 5, 10, 15, 20 }.

• Logistic regression:

– solver: ∈ { sag, lbfgs };
– C ∈ { 0.001, 0.01, 0.1, 1, 10, 100 };

• Multinomial Naive Bayes:

– α ∈ { 0.001, 0.01, 0.1, 1 };
– fit prior ∈ { True, False };

• Neural networks : In addition to the hyperparameter space description in Table 1, we give more

details about the optimizers used for training neural networks:

– Adadelta: ρ = 0.95, decay = 0;

– Adam: β1 = 0.9, β1 = 0.999, decay = 0;

– Adagrad: decay = 0;

– Rmsprop: ρ = 0.9, decay = 0.

For the best performing model (neural network with transformed input with convolutional layers,

fifth line in Table 3), we further fine tuned the hyperparameter choice using Bayesian optimization as

described in Section 5.3.3. To get an idea of the progress made during the Bayesian optimization, we

plot the obtained cross-validation accuracy as a function of the number of iterations of the optimizer

in Figure 4. After 300 iterations, the performance stagnates, and thus we can stop the exploration.
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Figure 4: The convergence plot of the Gaussian process
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