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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2025
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recherche du Québec – Nature et technologies.
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Abstract : We consider fair resource allocation in sequential decision-making environments modeled
as weakly coupled Markov decision processes, where resource constraints couple the action spaces of N
sub-Markov decision processes (sub-MDPs) that would otherwise operate independently. We adopt a
fairness definition using the generalized Gini function instead of the traditional utilitarian (total-sum)
objective. After introducing a general but computationally prohibitive solution scheme based on linear
programming, we focus on the homogeneous case where all sub-MDPs are identical. For this case, we
show for the first time that the problem reduces to optimizing the utilitarian objective over the class of
“permutation invariant” policies. This result is particularly useful as we can exploit efficient algorithms
that optimizes the utilitarian objective such as Whittle index policies in restless bandits to solve the
problem with this fairness objective. For more general settings, we introduce a count-proportion-based
deep reinforcement learning approach. Finally, we validate our theoretical findings with comprehensive
experiments, confirming the effectiveness of our proposed method in achieving fairness.
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1 Introduction

Machine learning (ML) algorithms play a significant role in automated decision-making processes,

influencing our daily lives. Mitigating biases within the ML pipeline is crucial to ensure fairness and

generate reliable outcomes (Caton and Haas, 2024). Extensive research has been conducted to enhance

fairness across various applications, such as providing job hiring services (van den Broek et al., 2020;

Cimpean et al., 2024), assigning credit scores and loans (Kozodoi et al., 2022), and delivering healthcare

services (Farnadi et al., 2021; Chen et al., 2023).

However, most real-world decision processes are sequential in nature and past decisions may have

a long-term impact on equity (D’Amour et al., 2020). For example, if people are unfairly denied credit

or job opportunities early in their careers, there would be long-term consequences on opportunities

for advancement (Liu et al., 2018). Another motivating example is taxi dispatching. If certain areas

are consistently prioritized over others, then there can be long-term disparities in service accessibility.

This may lead to long waiting times for passengers in certain neighborhoods, while taxis run empty

and seek passengers in other areas (Liu et al., 2021; Guo et al., 2023).

Fairness is a complex and multi-faceted concept, and there are many different ways in which it can

be operationalized and measured. We resort to the generalized Gini social welfare function (GGF)

(Weymark, 1981), which covers various fairness measures as special cases. The long-term impacts of

fair decision dynamics have recently been approached using Markov decision processes (MDPs) (Wen

et al., 2021; Puranik et al., 2022; Ghalme et al., 2022). Studying fairness in MDPs helps mitigate

bias and inequality in decision-making processes and evaluate their broader societal and operational

impacts across diverse applications.

To the best of our knowledge, we are the first to incorporate fairness considerations in the form of the

GGF objective within weakly coupled Markov decision processes (WCMDPs) (Hawkins, 2003; Adelman

and Mersereau, 2008), which can be considered as an extension of restless multi-arm bandit problems

(RMABs) (Hawkins, 2003; Zhang, 2022) to multi-action and multi-resource settings. This model is

particularly relevant to resource allocation problems, as it captures the complex interactions of coupled

MDPs (arms) over time restricted by limited resource availability, and allows the applicability of our

work to various applications in scheduling (Saure et al., 2012; El Shar and Jiang, 2024), application

screening (Gast et al., 2024), budget allocation (Boutilier and Lu, 2016), and inventory (El Shar and

Jiang, 2024).

Contributions Our contributions are as follows. Theoretically, we reformulate the WCMDP

problem with the GGF objective as a linear programming (LP) problem, and show that, under sym-

metry, it reduces to maximizing the average expected total discounted rewards, called the utilitarian

approach. Methodologically, we propose a state count approach to further simplify the problem, and in-

troduce a count proportion-based deep reinforcement learning (RL) method that can solve the reduced

problem efficiently and can scale to larger cases by assigning resources proportionally to the number of

stakeholders. Experimentally, we design various experiments to show the GGF-optimality, flexibility,

scalability and efficiency of the proposed deep RL approach. We benchmark our approach against

the Whittle index policy on machine replacement applications modeled as RMABs (Akbarzadeh and

Mahajan, 2019), showing the effectiveness of our method in achieving fair outcomes under different

settings.

There are two studies closely related to our work. The first work by Gast et al. (2024) considers

symmetry simplification and count aggregation MDPs. They focus on solving an LP model repeatedly

with a total-sum objective to obtain asymptotic optimal solutions when the number of coupled MDPs

is very large, whereas we explicitly address the fairness aspect and exploit a state count representation

to design scalable deep RL approaches. The second work by Siddique et al. (2020) integrates the

fair Gini multi-objective RL to treat every user equitably. This fair optimization problem is later

extended to the decentralized cooperative multi-agent RL by Zimmer et al. (2021), and further refined

to incorporate preferential treatment with human feedback by Siddique et al. (2023) and Yu et al.
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(2023). In contrast, our work demonstrates that the WCMDP with the GGF objective and identical

coupled MDPs reduces to a much simpler utilitarian problem, which allows us to exploit its structure

to develop efficient and scalable algorithms. A more comprehensive literature review on fairness in

resource allocation, MDPs, RL, and RMABs, is provided in Appendix A to clearly position our work.

2 Background

We start by reviewing infinite-horizon WCMDPs and introducing the GGF for encoding fairness.

We then define the fair optimization problem and provide an exact solution scheme based on linear

programming.

Notation: Let [N ] := {1, . . . , N} for any integer N . For any vector v ∈ RN , the n-th element is

denoted as vn and the average value as v̄ = 1
N

∑N
n=1 vn. An indicator function I{x ∈ A} equals 1 if

x ∈ A and 0 otherwise. For any set X, ∆(X) represents the set of all probability distributions over X.

We let SN be the set of all N ! permutations of the indices in [N ] and GN be the set of all permutation

operators so that Q ∈ GN if and only if there exists a σ ∈ SN such that Qv(n) = vσ(n) for all n ∈ [N ]

when v ∈ RN .

2.1 The weakly coupled MDP

We consider N MDPs indexed by n ∈ N := [N ] interacting in discrete-time over an infinite hori-

zon t ∈ T := {0, 1, . . . ,∞}. The n-th MDP Mn, also referred as sub-MDP, is defined by a tuple

(Sn,An, pn, rn, µn, γ), where Sn is a finite set of states with cardinality S, and An is a finite set of

actions with cardinality A. The transition probability function is defined as pn(s
′
n|sn, an) = P(st+1,n =

s′n|st,n = sn, at,n = an), which represents the probability of reaching state s′n ∈ Sn after performing

action an ∈ An in state sn ∈ Sn at time t. The reward function rn(sn, an) denotes the immediate

real-valued reward obtained by executing action an in state sn. Although the transition probabilities

and the reward function may vary with the sub-MDP n, we assume that they are stationary across all

time steps for simplicity. The initial state distribution is represented by µn ∈ ∆(Sn), and the discount

factor, common to all sub-MDPs, is denoted by γ ∈ [0, 1).

An infinite-horizon WCMDP M(N) consists of N sub-MDPs, where each sub-MDP is independent

of the others in terms of state transitions and rewards. They are linked to each other solely through a

set of K constraints on their actions at each time step. Formally, the WCMDP is defined by a tuple

(S(N),A(N), p(N), r, µ(N), γ), where the state space S(N) is the Cartesian product of individual state

spaces, and the action space A(N) is a subset of the Cartesian product of action spaces, defined as

A(N) := {(a1, . . . , aN ) |
∑N

n=1 dk,n(an) ≤ bk,∀k ∈ K, an ∈ An}, where K := [K] is the index set of

constraints, dk,n(an) ∈ R+ represents the consumption of the k-th resource consumption by the n-th

MDP when action an is taken, and bk ∈ R+ the available resource of type k.1 We define an idle action

that consumes no resources for any resource k to ensure that the feasible action space is non-empty.

The state transitions of the sub-MDPs are independent, so the system transits from state s to

state s′ for a given feasible action a at time t with probability p(N)(s′|s,a) =
∏N

n=1 pn(s
′
n|sn, an) =∏N

n=1 P(st+1,n = s′n|st,n = sn, at,n = an). After choosing an action a ∈ A(N) in state s ∈ S(N), the

decision maker receives rewards defined as r(s,a) = (r1(s1, a1), . . . , rN (sN , aN )) with each component

representing the reward associated with the respective sub-MDP Mn. We employ a vector form for

the rewards to offer the flexibility for formulating fairness objectives on individual expected total

discounted rewards in later sections.

We consider stationary Markovian policy π : S(N) × A(N) → [0, 1], with notation π(s,a) cap-

turing the probability of performing action a in state s. The initial state s0 is sampled from the

distribution µ(N). Using the discounted-reward criteria, the state-value function V π
n specific to the

1Actually, bk ≤
∑N

n=1 maxan∈An dk,n(an), w.l.o.g.
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n-th sub-MDP Mn, starting from an arbitrary initial state s0 under policy π, is defined as V π
n (s0) :=

Eπ [
∑∞

t=0 γ
trn(st,n, at,n)|s0] , where at ∼ π(st, ·). The joint state-value vector-valued function V π(s0) :

S(N) → RN is defined as the column vector of expected total discounted rewards for all sub-MDPs

under policy π, i.e., V π(s0) := (V π
1 (s0), V

π
2 (s0), . . . , V

π
N (s0))

⊤
. We define V π

0 as the expected vectorial

state-value under initial distribution µ(N), i.e.,

V π
0 := E[V π(s0)|s0 ∼ µ(N)]. (1)

2.2 The Generalized Gini Function

The vector V π
0 represents the expected utilities for sub-MDPs. A social welfare function aggregates

these utilities into a scalar, measuring fairness in utility distribution with respect to a maximization

objective.

Social welfare functions can vary depending on the values of a society, such as α-fairness (Mo

and Walrand, 2000), Nash social welfare (Fan et al., 2022; Mandal and Gan, 2022), or max-min

fairness (Bistritz et al., 2020; Cousins et al., 2022). Following Siddique et al. (2020), we require a

fair solution to meet three properties: efficiency, impartiality, and equity. This motivates the use

of GGF from economics (Weymark, 1981), which satisfies these properties. For N sub-MDPs, GGF

is defined as GGFw[v] := minσ∈SN
∑N

n=1 wnvσ(n), where v ∈ RN , w ∈ ∆(N ) is non-increasing in n,

i.e., w1 ≥ w2 ≥ · · · ≥ wN . Intuitively, since GGFw[v] =
∑N

n=1 wnvσ∗(n) with σ∗ as the minimizer,

which reorders the terms of v from lowest to largest, it computes the weighted sum of v assigning

larger weights to its lowest components. When the order of sub-MDPs is fixed, we use the equivalent

formulation GGFw[v] = minσ∈SN
∑

n wσ(n)vn as permuting either vector results in the same outcome.

As discussed in Siddique et al. (2020), GGF can reduce to special cases by setting its weights to

specific values, including the maxmin egalitarian approach (w1 → 1, w2 → 0, . . . , wN → 0) (Rawls,

1971), regularized maxmin egalitarian (w1 → 1, w2 → ϵ, . . . , wN → ϵ), leximin notion of fairness

(wk/wk+1 → ∞) (Rawls, 1971; Moulin, 1991), and the utilitarian approach formally defined below for

the later use in reducing the GGF problem.

Definition 2.1 (Utilitarian Approach). The utilitarian approach within the GGF framework is obtained

by setting equal weights for all individuals, i.e., w1/N := 1/N so that GGFw1/N
[v] = minσ∈SN∑N

n=1
1
N vσ(n) =

1
N

∑N
n=1 vn = v̄.

The utilitarian approach maximizes average utilities over all individuals but does not guarantee

fairness in utility distribution, as some sub-MDPs may be disadvantaged to increase overall utility.

The use of GGF offers flexibility by encoding various fairness criteria in a structured way. Moreover,

GGFw[v] is concave in v, which has nice properties for problem reformulation.

2.3 The GGF-WCMDP problem

By combining GGF and the vectored values from the WCMDP in (1), the goal of the GGF-WCMDP

problem (2) is defined as finding a stationary policy π that maximizes the GGF of the expected total

discounted rewards, i.e., max
π

GGFw [V π
0 ] that is equivalent to

max
π

min
σ∈SN

w⊤
σ Eπ

[ ∞∑
t=0

γtr(st,at)

∣∣∣∣s0 ∼ µ(N)

]
. (2)

We note that Lemma 3.1 in Siddique et al. (2020) establishes the optimality of stationary Markov

policies for any multi-objective discounted infinite-horizon MDP under the GGF criterion. To obtain

an optimal policy for the GGF-WCMDP problem (2), we introduce the following LP model with the

GGF objective (GGF-LP):
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max
λ,ν,q

N∑
i=1

λi +

N∑
j=1

νj (3a)

s.t. λi + νj ≤ wi

∑
s∈S(N)

∑
a∈A(N)

rj(s,a)q(s,a), ∀i, j∈ N

∑
a∈A(N)

q(s,a)− γ
∑

s′∈S(N)

∑
a∈A(N)

q(s′,a)p(N)(s|s′,a) = µ(N)(s), ∀s ∈ S(N), (3b)

q(s,a) ≥ 0, ∀s ∈ S(N),∀a ∈ A(N). (3c)

See Appendix D.1 for details on obtaining model (3) that exploits the dual linear programming

formulation for solving discounted MDPs. Here, q(s,a) represents the total discounted visitation

frequency for state-action pair (s,a), starting from s0.

The dual form separates dynamics from rewards, with the expected discounted reward for sub-MDP

n given by
∑

s∈S(N)

∑
a∈A(N) rn(s,a)q(s,a). The one-to-one mapping between the solution q(s,a)

and an optimal policy π(s,a) is π(s,a) = q(s,a)/
∑

a∈A(N) q(s,a).

Scalability is a critical challenge in obtaining exact solutions as the state and action spaces grow

exponentially with respect to the number of sub-MDPs, making the problem intractable. We thus

explore approaches that exploit symmetric problem structures, apply count-based state aggregation,

and use RL-based approximation methods, to address this scalability issue, which will be discussed

next.

3 Utilitarian reduction under symmetric Sub-MDPs

In Section 3.1, we will formally define the concept of symmetric WCMDPs (Definition 3.1) and prove

that an optimal policy of the GGF-WCMDP problem can be obtained by solving the utilitarian

WCMDP using “permutation invariant” policies. This enables the use of Whittle index policies in

the RMAB setting while, for the more general setting, Section 3.2 proposes a count aggregation MDP

reformulation that will be solved using deep RL in Section 4.

3.1 GGF-WCMDP problem reduction

We start with formally defining the conditions for a WCMDP to be considered symmetric.

Definition 3.1 (Symmetric WCMDP). A WCMDP is symmetric if

1. (Identical Sub-MDPs) Each sub-MDP is identical, i.e., Sn = S, An = A, pn = p, rn = r,

µn = µ, for all n ∈ N , and for some (S,A, p, r, µ, γ) tuple.

2. (Symmetric resource consumption) For any k ∈ K, the number of resources consumed is

the same for each sub-MDP, i.e., dk,n(an) = dk(an) for all n ∈ N , and for some dk(·).
3. (Permutation-Invariant Initial Distribution) For any permutation operator Q ∈ GN , the

probability of selecting the permuted initial state Qs̄0 is equal to that of selecting s̄0, i.e.,

µ(N)(s̄0) = µ(N)(Qs̄0),∀s̄0 ∈ S(N),∀Q ∈ GN .

The conditions of symmetric WCMDP identify a class of WCMDPs that is invariant under any

choice of indexing for the sub-MDPs. This gives rise to the notion of “permutation invariant” policies

(see Definition 1 in Cai et al. (2021)) and the question of whether this class of policies is optimal for

symmetric WCMDPs.

Definition 3.2 (Permutation Invariant Policy). A Markov stationary policy π is said to be permutation

invariant if the probability of selecting action a in state s is equal to that of selecting the permuted
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action Qa in the permuted state Qs, for all Q ∈ GN . Formally, this can be expressed as π(s,a) =

π(Qs, Qa), for all Q ∈ GN , s ∈ S(N) and a ∈ A(N).

This symmetry ensures that the expected state-value function, when averaged over all trajectories,

is identical for each sub-MDP, leading to a uniform state-value representation. From this observation,

and applying Theorem 6.9.1 from (Puterman, 2005), we construct a permutation-invariant policy from

any policy, resulting in uniform state-value representation (Lemma 3.3).

Lemma 3.3 (Uniform State-Value Representation). If a WCMDP is symmetric, then for any policy π,

there exists a corresponding permutation invariant policy π̄ such that the vector of expected total

discounted rewards for all sub-MDPs under π̄ is equal to the average of the expected total discounted

rewards for each sub-MDP, i.e., V π̄
0 = 1

N

∑N
n=1 V

π
0,n1.

The proof is detailed in Appendix B.3. Furthermore, one can use the above lemma to show that

the optimal policy for the GGF-WCMDP problem (2) under symmetry can be recovered from solving

the problem with equal weights, i.e., the utilitarian approach. Our main result is presented in the

following theorem. See Appendix B.4 for a detailed proof.

Theorem 3.4 (Utilitarian Reduction). For a symmetric WCMDP, let Π∗
1/N,PI be the set of optimal

policies for the utilitarian approach that is permutation invariant, then Π∗
1/N,PI is necessarily non-

empty and all π∗
1/N,PI ∈ Π∗

1/N,PI satisfies

GGFw[V
π∗
1/N,PI

0 ] = max
π

GGFw [V π
0 ] ,∀w ∈ ∆(N).

This theorem simplifies solving the GGF-WCMDP problem by reducing it to an equivalent util-

itarian problem, showing that at least one permutation-invariant policy is optimal for the original

GGF-WCMDP problem and the utilitarian reduction. Therefore, we can restrict the search for opti-

mal policies to this specific class of permutation-invariant policies. The utilitarian approach does not

compromise the GGF optimality and allows us to leverage more efficient and scalable techniques to

solve the GGF-WCMDP problem (Eq. 2), such as the Whittle index policies for RMABs, as demon-

strated in the experimental section. We note that the utilitarian reduction theorem can be extended

to a broader class of fairness measures, such as α-fairness, as long as the fairness measure is con-

cave, permutation invariant, and constant vector invariant (Corollary B.4.1). See Appendix B.5 for a

detailed proof.

3.2 The count aggregation MDP

Assuming symmetry across all N sub-MDPs and using a permutation-invariant policy within a utilitar-

ian framework allows us to simplify the global MDP by aggregating the sub-MDPs based on their state

counts and tracking the number of actions taken in each state. Since each sub-MDP follows the same

transition probabilities and reward structure, we can represent the entire system more compactly. This

symmetry consideration is practical in many real-world applications where a large number of identical

or interchangeable identities demand fair and efficient treatment, such as patients in healthcare or taxi

drivers in public transportation services. By leveraging symmetry, we can reduce computational com-

plexity for scalable fair solutions while inherently enforcing fairness as the policy treats all sub-MDPs

equivalently.

Motivated by the symmetry simplification representation in Gast et al. (2024) for the utilitarian

objective, we consider an aggregation ϕ = (f, gs), where f : S(N) → NS maps state s to a count

representation x with xs denoting the number of sub-MDPs in the s-th state. Similarly, gs : A(N) →
NS×A maps action a to a count representation u, where us,a indicates the number of MDPs at s-th

state that performs a-th action. We can formulate the count aggregation MDP (definition 3.5). The

details on obtaining the exact form are in Appendix C.
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Definition 3.5 (Count Aggregation MDP). The count aggregation MDP Mϕ derived from a WCMDP

(S(N),A(N), p(N), r, µ(N), γ) consists of the elements (S(N)
f ,A(N)

gs , p
(N)
ϕ , r̄ϕ, µ

(N)
f , γ).

Both representations lead to the same optimization problem as established in Gast et al. (2024)

when the objective is utilitarian. Using the count representation, the mean expected total discounted

reward V̄
π1/N

0 for a WCMDP M(N) with permutation invariant distribution µ(N) and equal weights

w1/N (Theorem 3.4) is then equivalent to the expected total discounted mean reward V̄
πϕ

0 for the

count aggregation MDP Mϕ given the policy πϕ : S(N)
f → ∆(A(N)

gs ) under aggregation mapping with

initial distribution µ
(N)
f , i.e., V̄

π1/N

0 = 1
N

∑N
n=1 V

π1/N

0,n = 1
S

∑S
s=1 V

πϕ

0,s = V̄
πϕ

0 .

The objective in Equation 2 is therefore reformulated as max
πϕ

V̄
πϕ

0 , i.e.,

max
πϕ

1

S
Eπϕ

[ ∞∑
t=0

γtr̄ϕ(xt,ut)

∣∣∣∣x0 ∼ µ
(N)
f

]
. (4)

An LP method is provided to solve the count aggregation MDP in Appendix D.2.

4 Count-proportion-based DRL

We now consider the situation where the transition dynamics p
(N)
ϕ are unknown and the learner

computes the (sub-)optimal policy through trial-and-error interactions with the environment. In Sec-

tion 4.1, we introduce a count-proportion-based deep RL (CP-DRL) approach. This method incorpo-

rates a stochastic policy neural network with fixed-sized inputs and outputs, designed for optimizing

resource allocation among stakeholders under constraints with count representation. In Section 4.2,

we detail the priority-based sampling procedure used to generate count actions.

4.1 Stochastic policy neural network

One key property of the count aggregation MDP is that the dimensions of the state space S(N)
f and

the action space A(N)
gs are constant and irrespective of the number of sub-MDPs. To further simplify

the analysis and eliminate the influence of N , we define the count state proportion as x̄ = x/N and

the resource proportion constraint for each resource k as b̄k = bk/(N maxa∈A dk(a)) ∈ [0, 1]. This

converts the states into a probability distribution, allowing generalization when dealing with a large

number of agents. The stochastic policy network in Figure 1 is designed to handle the reduced count

aggregation MDP problem (4) by transforming the tuple (x̄, b̄) into a priority score matrix U and a

resource-to-use proportion vector p̃, which are then used to generate count actions u via a sampling

procedure (discussed in Section 4.2).

Figure 1: CP-based stochastic policy neural metwork
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The policy network features fixed-size inputs and outputs, enabling scalability in large-scale systems

without requiring structural modifications when adjusting the number of resources or machines. The

input consists of a fixed-size vector of size S + K, combining the count state proportion x̄ ∈ [0, 1]S

and the resource proportion b̄ ∈ [0, 1]K . The policy network processes these inputs to produce outputs

of size S ×A+K, which include a matrix U ∈ (0, 1]S×A representing the priority scores for selecting

count actions and a vector p̃ ∈ [0, 1]K representing the proportion of resource usage relative to the

total available resources b̄.

The advantages of adding additional resource proportion nodes p̃ to the output layer are twofold.

First, it reduces the computational effort required to ensure that the resource-to-use does not exceed b̄.

Instead, the resource constraint is satisfied by restricting the resource-to-use proportions p̃ to be

element-wise proportional to b̄. Second, since the optimal policy may not always use all available

resources, we incorporate the additional nodes to capture the complex relationships between different

states for more effective strategies to allocate resources.

4.2 Priority-based sampling procedure

Priority-based sampling presents a challenge since legal actions depend on state and resource con-

straints. To address this, a masking mechanism prevents the selection of invalid actions. Each element

up
s,a ∈ U represents the priority score of taking the a-th action in the s-th state. When the state count

xs is zero, it implies the absence of sub-MDPs in this state, and the corresponding priority score is

masked to zero. Legal priorities are thus defined for states with non-zero counts, i.e., up
s,a = 0 if xs = 0

for all s ∈ [S], a ∈ [A].

Since the selected state-action pairs must also satisfy multi-resource constraints, we introduced a

forbidden set F , which specifies the state-action pairs that are excluded from the sampling process. The

complete procedure is outlined in Algorithm 1. The advantage of this approach is that the number of

steps does not grow exponentially with the number of sub-MDPs. In the experiments, after obtaining

the count action u, a model simulator is used to generate rewards and the next state as described in

Algorithm 2 in Appendix E. The simulated outcomes are used for executing policy gradient updates

and estimating state values.

One critical advantage of using CP-DRL is its scalability. More specifically, the approach is designed

to handle variable sizes of stakeholders N and resources K while preserving the number of aggregated

count states constant for a given WCMDP. By normalizing inputs to fixed-size proportions, the network

can seamlessly adapt to different scales, making it highly adaptable. Moreover, the fixed-size inputs

allow flexibility that the neural network is trained once and used in multiple tasks with various numbers

of stakeholders and resource limitations.

Algorithm 1 Count action sampling based on priority scores

Input: Count state x, priority score matrix U , resource limitations b, resource-to-use proportion p̃, resource con-
sumption function d(a)
Initialize: b̃← b · p̃, u← 0S×A, F ← ∅
Apply masking to U and update the forbidden set by F ← F ∪ {(s, a) | up

s,a = 0 for s ∈ [S] and a ∈ [A]}
while |F| < S ×A do

Sample a state-action index pair (s, a) /∈ F with the probability proportional to U
if dk(a) ≤ b̃k for all k then

Update us,a ← us,a + 1, xs ← xs − 1

Update b̃k ← b̃k − dk(a) for all k
if xs = 0 then

Add all actions for the s-th state to forbidden set: F ← F ∪ {(s, a) | ∀a ∈ [A]}
end if

else
Add (s, a) to forbidden set F ← F ∪ {(s, a)}

end if
end while
Return: Count action matrix u
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5 Experimental results

We apply our methods to the machine replacement problem (Delage and Mannor, 2010; Akbarzadeh

and Mahajan, 2019), providing a scalable framework for evaluating the CP-DRL approach as problem

size and complexity increase. We focus on a single resource (K = 1) and binary action (A = 2) for each

machine, allowing validation against the Whittle index policy for RMABs (Whittle, 1988). We applied

various DRL algorithms, including Soft Actor Critic (SAC), Twin Delayed DDPG (TD3), and Proximal

Policy Optimization (PPO). Among these, PPO algorithm (Schulman et al., 2017) consistently delivers

the most stable and high-quality performance. We thus choose PPO as the main algorithm for our

CP-DRL approach (see Section 4). Our code is provided on GitHub.2

Machine Replacement Problem The problem consists of N identical machines following Markovian

deterioration rules with S states representing aging stages. The state space S(N) is a Cartesian product.

At each decision stage, actions a are applied to all machines under resource constraints, with action an
representing operation (passive action) or replacement (active action). Resource consumption dn(an)

is 1 for replacements and 0 for operations, with up to b replacements per time step. The costs range

from 0 to 1, transformed to fit the reward representation by multiplying by -1 and adding 1. Machines

degrade if not replaced and remain in state S until replaced. Refer to Appendix F.1 for cost structures

and transition probabilities. We choose operational and replacement costs across two presets to capture

different scenarios (see Appendix F.2 for details): i) Exponential-RCCC and ii) Quadratic-RCCC.

The goal is to find a fair policy that maximizes the GGF score over the expected total discounted

mean rewards with count aggregation MDP. In cases like electricity or telecommunication networks

(Nadarajah and Cire, 2024), where equipment is regionally distributed, a fair policy guarantees equi-

table operations and replacements, thereby preventing frequent failures in specific areas that lead to

unsatisfactory and unfair results for certain customers.

Experimental Setup We designed a series of experiments to test the GGF-optimality, flexibility, scal-

ability, and efficiency of our CP-DRL algorithm. We compare against seven benchmarks, including

optimal solutions (OPT) from the GGF-LP model (3) for small instances solved with Gurobi 10.0.3,

the Whittle index policy (WIP) for RMABs, and a random (RDM) agent that selects actions randomly

at each time step and averages the results over 10 independent runs. Additionally, we implemented

a simple DRL baseline, Vanilla-DRL (V-DRL), with a utilitarian objective. The stochastic policy

network employs a fully connected neural network that maps the vector s to a N -dimensional prob-

ability vector. We also implemented two heuristics to complement the random agent approach. The
oldest-first (OFT) approach selects the machine in the worst state, while the myopic (MYP) selects

the machine that maximizes immediate reward. We finally implemented an equal-resources (EQR)

approach based on Li and Varakantham (2022a), which imposes that each machine be replaced once

every N steps to ensure an equal distribution of resources.

GGF weights decay exponentially with a factor of 2, defined as wn = 1/2n, and normalized to

sum to 1. We use a uniform distribution µ(N) over S(N) and set the discount factor γ = 0.95. We

use Monte Carlo simulations to evaluate policies over M trajectories truncated at time length T . We

choose M = 1,000 and T = 300 across all experiments. Hyperparameters for the CP-DRL algorithm

are in Appendix F.4.

Experiment 1 (GGF-Optimality) We obtain optimal solutions using the OPT model for instances

where N ∈ {3, 4, 5}, with each machine having S = 3 states. We select indexable instances to apply

the WIP method for comparison. Note that, the WIP method is particularly effective in this case

as it solves the equivalent utilitarian problem (as demonstrated in the utilitarian reduction result in

Section 3.1). In most scenarios with small instances, WIP performs near-GGF-optimal since resources

are assigned impartially, making it challenging for CP-DRL to consistently outperform WIP. As shown

2https://github.com/x-tu/GGF-wcMDP.

https://github.com/x-tu/GGF-wcMDP
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in Figure 2, the CP-DRL algorithm converges toward or slightly below the OPT values across the

scenarios for the Exponential-RCCC case. WIP performs better than the random agent but does not

reach the OPT values, especially as the number of machines increases. CP-DRL either outperforms or

has an equivalent performance as WIP but consistantly outperforms the random policy.

(a) N=3 (b) N=4 (c) N=5

Figure 2: (Colored) Learning Curves for Different Numbers of Machines (N from 3 to 5). Experimental results for the
Exponential-RCCC scenario are shown with y-axes starting at 7 for zoom-in. Red dashed lines represent the OPT values,
green dashed lines show the WIP performance, blue lines depict CP-DRL learning curves over 800 episodes, and orange
lines show the RDM performance. Shaded areas indicate the standard deviation across 5 runs

Experiment 2 (Flexibility) The fixed-size input-output design allows CP-DRL to leverage multi-task

training (MT) with varying machine numbers and resources. We refer to this multi-task extension as

CP-DRL(MT). We trained the CP-DRL(MT) with N ∈ {2, 3, 4, 5}, randomly switching configurations

at the end of each episode over 2000 training episodes. CP-DRL(MT) was evaluated separately, and

GGF values for WIP and RDM policies were obtained from 1000 Monte Carlo runs. The numbers

following the plus-minus sign (±) represent the variance across 5 experiments with different random

seeds in Tables 1 and 2. Variances for WIP and RDM are minimal and omitted, with bold font

indicating the best GGF scores at each row excluding optimal values. As shown in Table 1, CP-

DRL(MT) consistently achieves scores very close to the OPT values as the number of machines increases

from 2 to 4. For the 5-machine case, CP-DRL(MT) shows slightly better performance than the

single-task CP-DRL. In Table 2, the single- and multi-task CP-DRL agents show slight variations in

performance across different machine numbers. For N = 5, CP-DRL achieves the best GGF score,

slightly outperforming WIP. In both cases, the CP-DRL approach outperforms Vanilla-DRL, the three

heuristic methods, and the random agent.

Table 1: GGF Scores (Exponential-RCCC)

N OPT WIP CP-DRL CP-DRL(MT) V-DRL OFT MYP EQR RDM

2 14.19 14.07 14.12 ± 0.01 14.11 ± 0.01 13.56 ± 0.00 5.84 12.59 10.05 9.67
3 14.08 13.75 13.95 ± 0.02 13.89 ± 0.14 13.39 ± 0.00 7.92 12.32 11.67 10.13
4 13.94 13.27 13.64 ± 0.05 13.59 ± 0.10 13.04 ± 0.01 9.02 12.86 12.03 9.74
5 13.77 12.47 12.96 ± 0.01 13.28 ± 0.03 12.83 ± 0.00 10.01 12.08 11.87 8.95

Table 2: GGF Scores (Quadratic-RCCC)

N OPT WIP CP-DRL CP-DRL(MT) V-DRL OFT MYP EQR RDM

2 16.17 16.17 16.14 ± 0.00 16.14 ± 0.00 15.36 ± 0.00 3.11 6.61 9.73 10.15
3 16.10 16.09 16.05 ± 0.00 16.05 ± 0.00 15.17 ± 0.01 6.16 6.63 12.73 11.83
4 16.01 16.01 15.94 ± 0.00 15.94 ± 0.00 15.01 ± 0.00 7.92 6.85 14.02 12.17
5 15.91 15.86 15.87 ± 0.02 15.86 ± 0.02 14.73 ± 0.00 9.25 6.70 14.64 11.98

Experiment 3 (Scalability) We assess CP-DRL scalability by increasing the number of machines while

keeping the resource proportion at 0.1 for the Exponential-RCCC instances. We refer to this scaled

extension as CP-DRL(SC). We vary the number of machines from 10 to 100 to evaluate CP-DRL
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performance as the problem size grows. We also use CP-DRL(SC), trained on 10 machines with 1 unit

of resource, and scale it to tasks with 20 to 100 machines. Figure 3a shows CP-DRL and CP-DRL(SC)

consistently achieve higher GGF values than WIP as machine numbers increase. CP-DRL(SC) delivers

results comparable to separately trained CP-DRL, reducing training time while maintaining similar

performance. Both WIP and CP-DRL show linear growth in time consumption per episode as machine

numbers scale up.

(a) GGF values for the number of ma-
chines N ∈ [10, 100]

(b) Time per episode in seconds with a
resource ratio b/N = 0.1

(c) Time per episode in seconds with a
resource ratio b/N = 0.5

Figure 3: (Colored) Scalability and Time Efficiency of CP-DRL. Subfigures (a) and (b) show the scalability of CP-DRL
with a fixed resource ratio of 0.1. Subfigure (a) presents GGF values across different machine counts, with intervals
representing the standard deviation over 5 runs. Subfigure (b) and (c) depicts time per episode in seconds for a fixed
resource ratio of 0.1 and 0.5, respectively. In all time plots, the green line represents WIP during MC evaluation, the blue
line shows CP-DRL during training, and the orange line represents CP-DRL during MC evaluation

Experiment 4 (Efficiency) In the GGF-LP model (3), the number of constraints grows exponentially

with the number of machines N as N2+SN , and the variables increase by 2N+(N+1) ·SN . Using the

count dual LP model (20) reduces the model size, but constraints still grow as
(
N+S−1
S−1

)
and variables

increase by
(
N+S−1
S−1

)
· A. These growth patterns create computational challenges as the problem size

increases. A detailed time analysis for the GGF-LP and count dual LP models with N from 2 to 7 is

provided in Appendix F.5. In addition to the time per episode for a fixed ratio of 0.1 in Figure 3a,

we analyze performance with a 0.5 ratio (Figure 3c) and varying machine proportions, keeping the

number of machines fixed at 10. We evaluate CP-DRL over machine proportions from 0.1 to 0.9. The

results show that the time per episode increases linearly with the number of machines, while training

and evaluation times remain relatively stable. This indicates that the sampling procedure for legal

actions is the primary bottleneck. Meanwhile, the resource ratio has minimal impact on computing

times.

6 Conclusion

We incorporate the fairness consideration in terms of the generalized Gini function within the weakly

coupled Markov decision processes, and define the GGF-WCMDP optimization problem. First, we

present an exact method based on linear programming for solving it. We then derive an equivalent

problem based on a utilitarian reduction when the WCMDP is symmetric, and show that the set

of optimal permutation invariant policy for the utilitarian objective is also optimal for the original

GGF-WCMDP problem. We further leverage this result by utilizing a count state representation and

introduce a count-proportion-based deep RL approach to devise more efficient and scalable solutions.

Our empirical results show that the proposed method using PPO as the RL algorithm consistently

achieves high-quality GGF solutions. Moreover, the flexibility provided by the count-proportion ap-

proach offers possibilities for scaling up to more complex tasks and context where Whittle index policies

are unavailable due to the violation of the indexability property by the sub-MDPs.
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Appendix

A Related work

Fairness-aware learning is increasingly integrated into the decision-making ecosystem to accommodate

minority interests. However, naively imposing fairness constraints can actually exacerbate inequity

(Wen et al., 2021) if the feedback effects of decisions are ignored. Many real-world fairness applications

are not one-time static decisions (Zhao and Gordon, 2019) and can thus be better modeled with

sequential decision problems, which still remain relatively understudied.

Fairness in resource allocation Fairness has been an important concern in resource allocation prob-

lems, where traditional approaches often build upon optimization frameworks, leveraging fairness-

constrained optimization (Argyris et al., 2022; Chen and Hooker, 2023), game-theoretic concepts (Na-

mazi and Khodabakhshi, 2023), or axiomatic principles (Lan and Chiang, 2011) to derive fair solutions.

These models provide practical fair solutions, but do not account for the long-term impact of allocation

decisions, which motivates fair-aware sequential decision-making frameworks based on Markov decision

processes (MDPs) as discussed next.

Fairness with dynamics There are a few studies investigating fairness-aware sequential decision making

without relying on MDPs. For instance, Liu et al. (2018) consider one-step delayed feedback effects,

Creager et al. (2020) propose causal modeling of dynamical systems to address fairness, and Zhang

et al. (2019) construct a user participation dynamics model where individuals respond to perceived

decisions by leaving the system uniformly at random. These studies extend the fairness definition

in temporally extended decision-making settings, but do not take feedback and learning into account

that the system may fail to adapt to changing conditions. Alamdari et al. (2023) address this gap by

introducing multi-stakeholder fairness as non-Markovian sequential decision making and developing

a Q-learning based algorithm with counterfactual experiences to enhance sample-efficient fair policy

learning.

Fairness in Markov decision processes Zhang et al. (2020) consider how algorithmic decisions impact

the evolution of feature space of the underlying population modeled as MDPs but is limited to binary

decisions. Ghalme et al. (2022) study a fair resource allocation problem in the average MDP setting and

proposes an approximate algorithm to compute the policy with sample complexity bounds. However,

their definition of fairness is restricted to the minimum visitation frequency across all states, potentially

resulting in unbalanced rewards among sub-MDPs. Wen et al. (2021) develop fair decision-making

policies in discounted MDPs, but the performance guarantees are achieved only under a loose condition.

In contrast, our work takes into account a more comprehensive definition of fairness. Segal et al. (2023)

investigate the impact of societal bias dynamics on long-term fairness and the interplay between utility

and fairness under various optimization parameters. Additionally, Hassanzadeh et al. (2023) address

a fair resource allocation problem similar to our work but in continuous state and action space. They

define fairness to the agents considering all their allocations over the horizon under the Nash Social

Welfare objective in hindsight.

Fairness in reinforcement learning Jabbari et al. (2017) initiate the meritocratic fairness notion from

the multi-arm bandits setting to the reinforcement learning (RL) setting. Later, fairness consideration

has been integrated in RL to achieve fair solutions in different domains, including a fair vaccine

allocation policy that equalizes outcomes in the population (Atwood et al., 2019), balancing between

fairness and accuracy for interactive user recommendation (Liu et al., 2020; Ge et al., 2022), and fair

IoT that continuously monitors the human state and changes in the environment to adapt its behavior

accordingly (Elmalaki, 2021). However, most work focuses on the impartiality aspect of fairness. Jiang

and Lu (2019) investigate multi-agent RL where fairness is defined over agents and encoded with a

different welfare function, but the focus is on learning decentralized policies in a distributed way. We
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refer readers to two literature review papers by Gajane et al. (2022) and Reuel and Ma (2024) on

fairness considerations in RL, which provide comprehensive insights into current trends, challenges,

and methodologies in the field.

Fairness in restless multi-arm bandits A line of work closely related to ours focuses on fairness in

restless multi-arm bandits (RMABs). Li and Varakantham (2022a) first introduce the consideration

of fairness in restless bandits by proposing an algorithm that ensures a minimum number of selections

for each arm. Subsequent studies have explored similar individual fairness constraints, which aim to

distribute resources equitably among arms but in a probabilistic manner. For instance, Herlihy et al.

(2023) introduce a method that imposes a strictly positive lower bound on the probability of each

arm being pulled at each timestep. Li and Varakantham (2022b, 2023) investigate fairness by always

probabilistically favoring arms that yield higher long-term cumulative rewards. Additionally, Sood

et al. (2024) propose an approach where each arm receives pulls in proportion to its merit, which is

determined by its stationary reward distribution. Our work differs from these approaches by explicitly

aiming to prevent disparity and ensure a more balanced reward distribution among all arms through

the generalized Gini welfare objective. The only work that considers the Gini index objective is by

Verma et al. (2024), which develops a decision-focused learning pipeline to solve equitable RMABs. In

contrast, our work applies to a more general setting on weakly coupled MDPs, and does not rely on

the Whittle indexability of the coupled MDPs.

B Proofs of Section 3

We start this section with some preliminary results regarding 1) the effect of replacing a policy with

one that has permuted indices on the value function of a symmetric WCMDP (Section B.1); and 2) a

well-known result from Puterman (2005) on the equivalency between stationary policies and occupancy

measures (Section B.2). This is followed by the proof of Lemma 3.3, which helps establish our main

result, Theorem 3.4 in Section B.4.

B.1 Value function under permuted policy for symmetric WCMDP

Lemma B.1. If a weakly coupled WCMDP is symmetric (Definition 3.1), then for any policy π and

permutation operator Q, we have V π
0 = QV πQ

0 , where the permuted policy πQ(s,a) := π(Qs, Qa) for

all (s,a) pairs.

This lemma implies an important equivalency in symmetric weakly coupled MDPs with identical

sub-MDPs. If we permute the states and actions of a policy, the permuted version of the resulting

value function is equivalent to the original value function.

Proof. We can first show that for all t,

PπQ

(st = s,at = a|s0 = s̄0) = Pπ(st = Qs,at = Qa|s0 = Qs̄0).

This can be done inductively. Starting at t = 0, we have that:

PπQ

(s0 = s,a0 = a|s0 = s̄0) = πQ(s,a)I{s = s̄0}
= π(Qs, Qa)I{Qs = Qs̄0}
= Pπ(s0 = Qs,a0 = Qa|s0 = Qs̄0).

Next, assuming that PπQ

(st = s,at = a|s0 = s̄0) = Pπ(st = Qs,at = Qa|s0 = Qs̄0), we can show

that it is also the case for t+ 1:
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PπQ

(st+1 = s′,at+1 = a′|s0 = s̄0)

= πQ(s′,a′)
∑
s,a

P(st+1 = s′|st = s,at = a)PπQ

(st = s,at = a|s0 = s̄0)

= π(Qs′, Qa′)
∑
s,a

p(N)(s′|s,a)Pπ(st = Qs,at = Qa|s0 = Qs̄0)

= π(Qs′, Qa′)
∑
s,a

p(N)(Qs′|Qs, Qa)Pπ(st = Qs,at = Qa|s0 = Qs̄0)

= Pπ(st+1 = Qs′,at+1 = Qa′|s0 = Qs̄0),

where we use the fact that the sub-MDPs are identical so that p(N)(s′|s,a) = p(N)(Qs′|Qs, Qa).

We now have that,

V πQ

0 =
∑
s,a

∑
s̄0

µ(N)(s̄0)

∞∑
t=0

γtPπQ

(st = s,at = a|s0 = s̄0)r(s,a)

=
∑
s,a

∑
s̄0

µ(N)(s̄0)

∞∑
t=0

γtPπ(st = Qs,at = Qa|s0 = Qs̄0)r(s,a)

=
∑
s,a

∑
s̄0

µ(N)(Qs̄0)

∞∑
t=0

γtPπ(st = Qs,at = Qa|s0 = Qs̄0)r(s,a)

=
∑
s,a

∑
s̄0

µ(N)(Qs̄0)

∞∑
t=0

γtPπ(st = Qs,at = Qa|s0 = Qs̄0)Q
−1r(Qs, Qa)

= Q−1

(∑
s,a

∑
s̄0

µ(N)(Qs̄0)

∞∑
t=0

γtPπ(st = Qs,at = Qa|s0 = Qs̄0)r(Qs, Qa)

)

= Q−1

∑
s′,a′

∑
s̄′
0

µ(N)(s̄′0)

∞∑
t=0

γtPπ(st = s′,at = a′|s0 = s̄′0)r(s
′,a′)

 = Q−1V π
0 ,

where we first use the relation between PπQ

and π, then exploit the permutation invariance of µ(N).
We then exploit the permutation invariance Qr(s,a) = r(Qs, Qa), and reindex the summations using

s′ := Qs, a′ := Qa, and s̄′0 := Qs̄0.

B.2 Mapping between stationary policies and occupancy measures

We present results of Theorem 6.9.1 in Puterman (2005) to support Lemma 3.3. A detailed proof is

provided in the book.

Lemma B.2 (Theorem 6.9.1 of Puterman (2005)). Let Π denote the set of stationary stochastic Markov

policies and X the set of occupancy measures. There exists a bijection h : Π → X such that for any

policy π, h(π) uniquely corresponds to its occupancy measure qπ. Specifically, there is a one-to-one

mapping between policies and occupancy measures satisfying:

1. For any policy π ∈ Π, the occupancy measure qπ : S(N) ×A(N) → R is defined as

qπ(s,a) :=
∑

s̄0∈S(N)

µ(N)(s̄0)

∞∑
t=0

γtPπ (st = s,at = a|s0 = s̄0) , (5)

for all a ∈ A(N) and s ∈ S(N).
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2. For any occupancy measure q(s,a) : S(N) ×A(N) → R, the policy πq is constructed as

πq(s,a) :=
q(s,a)∑

a′∈A(N)

q (s,a′)
, (6)

for all a ∈ A(N) and s ∈ S(N).

It follows that π = πqπ .

Now, we show that the value function can be represented using occupancy measures.

Lemma B.3. For any policy π ∈ Π, and the occupancy measure qπ defined by (5), the expected total

discounted rewards under the policy π can be expressed as:

V π
0 =

∑
s∈S(N)

∑
a∈A(N)

qπ(s,a)r(s,a). (7)

Proof. Expanding the expected total discounted rewards V π
0 (as defined by equation 1), we have:

V π
0 =

∑
s̄0∈S(N)

µ(N)(s̄0)
∑

s∈S(N)

∑
a∈A(N)

∞∑
t=0

Pπ (st = s,at = a|s0 = s̄0) γ
tr(s,a).

Rearranging the terms:

V π
0 =

∑
s∈S(N)

∑
a∈A(N)

 ∑
s̄0∈S(N)

µ(N)(s̄0)

∞∑
t=0

γtPπ (st = s,at = a|s0 = s̄0)

 r(s,a).

Replacing the term in parentheses as the occupancy measure qπ(s,a) in (5) leads directly to equation 7,

which completes the proof.

B.3 Proof of Lemma 3.3

Lemma 3.3 (Uniform State-Value Representation) If a WCMDP is symmetric (Definition 3.1),
then for any policy π, there exists a corresponding permutation invariant policy π̄ such that the vector

of expected total discounted rewards for all sub-MDPs under π̄ is equal to the average of the expected

total discounted rewards for each sub-MDP, i.e.,

V π̄
0 =

1

N

N∑
n=1

V π
0,n1.

Proof by construction. We first construct, for any fixed Q, the permuted policy πQ(s,a) := π(Qs, Qa)

and characterize its occupancy measure qπQ as

qπQ(s,a) :=
∑

s̄0∈S(N)

µ(N)(s̄0)

∞∑
t=0

γtPπQ

(st = s,at = a|s0 = s̄0) . (8)

Next, we construct a new measure q̄ obtained by averaging all permuted occupancy measures qπQ for

Q ∈ GN on all (s,a) pairs as

q̄(s,a) :=
1

N !

∑
Q

qπQ(s,a). (9)
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One can confirm that q̄ is an occupancy measure, i.e., q̄ ∈ X , since each qQπ ∈ X and X is convex.

Indeed, the convexity of X easily follows from that the fact that it contains any measure that it is the

set of measures that satisfy Constraints 3b and 3c.

From Lemma B.2, a stationary policy π̄ can be constructed such that its occupancy measure

matches q̄(s,a):

qπ̄(s,a) :=
∑

s̄0∈S(N)

µ(s̄0)

∞∑
t=0

γtPπ̄ (st = s,at = a|s0 = s̄0) = q̄(s,a),∀s,a.

We can then derive the following steps:

V π̄
0 =

∑
s∈S(N)

∑
a∈A(N)

qπ̄(s,a)r(s,a) (By Lemma B.3)

=
∑

s∈S(N)

∑
a∈A(N)

q̄(s,a)r(s,a) (By Lemma B.2)

=
1

N !

∑
Q∈GN

∑
s∈S(N)

∑
a∈A(N)

qπQ(s,a)r(s,a) (By construction in equation 9)

=
1

N !

∑
Q∈GN

V πQ

0 (By Lemma B.3)

=
1

N !

∑
Q∈GN

Q−1V π
0 (By Lemma B.1)

=
1

N !

∑
Q∈GN

Q−1

V π
0,1

· · ·
V π
0,N

 (Vector form)

=
1

N !

(N − 1)!
∑N

n=1 V
π
0,n

· · ·
(N − 1)!

∑N
n=1 V

π
0,n

 (Property of permutation group)

=
1

N !
(N − 1)!

N∑
n=1

V π
0,n1

=
1

N

N∑
n=1

V π
0,n1.

We complete this proof by demonstrating that π̄ is permutation invariant. Namely, for all Q ∈ GN ,

we can show that:

π̄(Qs, Qa) ∝ 1

N !

∑
Q′∈GN

qπQ′ (Qs, Qa)

=
1

N !

∑
Q′∈GN

qπ(Q
′Qs, Q′Qa)

=
1

N !

∑
Q′′∈GN

qπ(Q
′′s, Q′′a)

=
1

N !

∑
Q′′∈GN

qπQ′′ (s,a)

∝ π̄(s,a).
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B.4 Proof of Theorem 3.4

We start with a simple lemma.

Lemma B.4. For any w and any v ∈ RN , we have that GGF1/N [v] ≥ GGFw[v].

Proof. This simply follows from:

GGF1/N [v] =
1

N
1⊤v =

 1

N !

∑
Q∈GN

Qw

⊤

v ≥ min
Q∈GN

(Qw)⊤v = GGFw[v].

Theorem 3.4 (Utilitarian Reduction) For a symmetric WCMDP (definition 3.1), let Π∗
1/N,PI be

the set of optimal policies for the utilitarian approach (definition 2.1) that is permutation invariant,

then Π∗
1/N,PI is necessarily non-empty and all π∗

1/N,PI ∈ Π∗
1/N,PI satisfies

GGFw[V
π∗
1/N,PI

0 ] = max
π

GGFw [V π
0 ] , ∀w ∈ ∆(N).

Proof. Let us denote an optimal policy to the special case of the GGF-WCMDP problem (2) with

equal weights as π∗
1/N :

π∗
1/N ∈ argmax

π
GGF1/N [V π

0 ] . (10)

Based on Lemma 3.3, we can construct a permutation invariant policy π̄∗
1/N satisfying

V̄
π∗
1/N

0 1 = V
π̄∗
1/N

0 , (11)

then with Equation (11) and the fact that any weight vector w must sum to 1, we have that

GGF1/N

[
V

π∗
1/N

0

]
= V̄

π∗
1/N

0 = GGFw

[
1

N

N∑
n=1

V
π∗
1/N

0,n 1

]
= GGFw

[
V

π̄∗
1/N

0

]
, ∀w.

Furthermore, given any w, let us denote with π∗
w any optimal policy to the GGF problem with w

weights. One can establish that:

GGFw[V
π∗
w

0 ] ≥ GGFw

[
V

π̄∗
1/N

0

]
= GGF1/N

[
V

π∗
1/N

0

]
≥ GGF1/N

[
V

π∗
w

0

]
. (12)

Considering that the largest optimal value for the GGF problem is achieved when weights are equal

(see Lemma B.4):

GGF1/N [V π
0 ] ≥ GGFw[V π

0 ],∀π, ∀w ∈ ∆(N).

The inequalities in (12) should therefore all reach equality:

GGFw[V
π∗
w

0 ] = GGFw

[
V

π̄∗
1/N

0

]
= GGF1/N

[
V

π∗
1/N

0

]
.

This implies that the bar optimal policy constructed from any optimal policy to the utilitarian approach

remains optimal for any weights in the GGF optimization problem. Furthermore, it implies that there

exists at least one permutation invariant policy that is optimal for the utilitarian approach.
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Now, let us take any optimal permutation invariant policy π∗
1/N,PI to the utilitarian problem. The

arguments above can straightforwardly be reused to get the conclusion that π̄∗
1/N,PI have the same

properties as the originally constructed π̄. Namely, for all w,

GGFw[V
π∗
w

0 ] = GGFw

[
V

π̄∗
1/N,PI

0

]
= GGF1/N

[
V

π∗
1/N

0

]
, ∀w ∈ ∆(N).

Looking more closely at π̄∗
1/N,PI, we observe that for any s and a:

π̄∗
1/N,PI(s,a) ∝

1

N !

∑
Q′∈GN

q
π∗,Q′
1/N,PI

(s,a)

=
1

N !

∑
Q′∈GN

qπ∗
1/N,PI

(s,a)

= qπ∗
1/N,PI

(s,a)

∝ π∗
1/N,PI(s,a).

Hence, we have that π̄∗
1/N,PI = π∗

1/N,PI. This thus implies that the permutation invariant π∗
1/N,PI

already satisfied these properties, i.e.,

GGFw[V
π∗
w

0 ] = GGFw

[
V

π∗
1/N,PI

0

]
= GGF1/N

[
V

π∗
1/N

0

]
, ∀w ∈ ∆(N).

B.5 Extension to Other Fairness Measures

The utilitarian reduction (Theorem 3.4) can be extended to a broader scope of fairness measures,

where we replace the GGF measure in optimization problem (2) and define the ρ-WCMDP problem

accordingly.

Corollary B.4.1. Let ρ : V → R, with V ⊆ RN , be a fairness measure that satisfies:

• (Concavity): The set V is convex and ∀v,w ∈ V, and θ ∈ [0, 1], ρ[θv + (1− θ)w] ≥ θρ[v] + (1−
θ)ρ[w]

• (Permutation invariance): ∀v ∈ V and all Q ∈ GN , both Qv ∈ V and ρ[v] = ρ[Qv]

• (Constant vector invariant) ∀v̄ ∈ R ∩ V, ρ[v̄1] = v̄.

For a symmetric WCMDP such that V π
0 ∈ V for all π, let Π∗

U, PI be the set of optimal policies for

the utilitarian approach that is permutation invariant, then Π∗
U, PI is necessarily non-empty and all

π∗
U, PI ∈ Π∗

U, PI satisfies

ρ[V
π∗
U, PI

0 ] = max
π

ρ [V π
0 ] .

Proof. Similar to the proof of Theorem 3.4, we define the utilitarian fairness measure as

ρU [v] =
1

N

N∑
n=1

vn.

Defining the optimal policy to the ρU -WCMDP problem with utilitarian objective as

π∗
U ∈ argmax

π
ρU [V

π
0 ] and with Lemma 3.3, we can construct a permutation invariant policy π̄∗

U

satisfying

V̄
π∗
U

0 1 = V
π̄∗
U

0 ∈ V, (13)

with V̄
π∗
U

0 := 1
N

∑N
n=1 V

π∗
U

0,n . Then we have that

ρU

[
V

π∗
U

0

]
= V̄

π∗
U

0 = ρ
[
V̄

π∗
U

0

]
= ρ

[
1

N

N∑
n=1

V
π∗
U

0,n 1

]
= ρ

[
V

π̄∗
U

0

]
,
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where we exploit ρ[v̄1] = v̄ for all v̄ ∈ R ∩ V. Furthermore, let π∗ be any optimal policy to the

ρ-WCMDP problem. One can establish that:

ρ[V π∗

0 ] ≥ ρ
[
V

π̄∗
U

0

]
= ρU

[
V

π∗
U

0

]
≥ ρU

[
V π∗

0

]
. (14)

By Jensen’s inequality and the fact that ρ[·] is concave, it holds that ρU [V
π∗

0 ] ≥ ρ[V π∗

0 ] since for all

v ∈ V, we have that

ρ[v] =
1

N !

∑
Q∈GN

ρ[Qv] ≤ ρ[
1

N !

∑
Q∈GN

Qv] = ρ[
1

N

N∑
n=1

vn1] =
1

N

N∑
n=1

vn = ρU [v],

where we use permutation invariance of ρ, followed with its concavity and its contant vector invariance.

The inequalities in (14) should therefore all reach equality:

ρ[V π∗

0 ] = ρ
[
V

π̄∗
U

0

]
= ρU

[
V

π∗
U

0

]
.

The rest of the argument follows exactly as in the proof of Theorem 3.4 (see Appendix B.4).

Now, we comment that the expected utility model ρ[v] = u−1
(

1
N

∑N
n=1 u(vn)

)
, where u(·) is

a monotone and concave function, satisfies the three properties defined in Corollary B.4.1 and is a

natural framework to measure fairness in resource allocation problems as discussed in Bertsimas et al.

(2012). The concavity of u(·) reflects a decreasing marginal utility on the allocated resource to an

individual. This property promotes equitable distributions of resources by discouraging disparities in

utility. A notable instance of this model is α-fairness (Mo and Walrand, 2000; Ju et al., 2023), which

is parameterized by α > 0 and takes the form

uα(v) :=

{
log(v) if α = 1,
v1−α

1−α if α ̸= 1.

The domain of ρ is restricted to non-negative if α ̸= 1 and strictly positive otherwise. This function

covers a range of fairness objectives, from the proportional fairness (α = 1) to the max-min fairness

(α → ∞).

C Count aggregation MDP

The exact form of the count aggregation MDP is obtained as follows.

Feasible Action The set of feasible actions in state x is defined as

A(N)
gs (x) := {u |

∑
s∈S

∑
a∈A

dk(a)us,a ≤ bk,∀k ∈ K ;
∑
a∈A

us,a = xs,∀s ∈ S}.

Reward Function The average reward for all sub-MDPs is defined as

r̄ϕ(x,u) =
1

N

∑
s∈S

∑
a∈A

us,a · r(s, a).

Transition Probability The transition probability p
(N)
ϕ (x′|x,u) is the probability that the number

of sub-MDPs in each state passes from x to x′ given the action counts u. We define the pre-

image f−1(x′) as the set containing all elements s′ ∈ S(N) that map to x′, then p
(N)
ϕ (x′|x,u) =∑

s′∈f−1(x′) p
(N)(s′|f−1(x), g−1

s (u)).
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Given the equivalence of transitions within the pre-image set, for an arbitrary state-action pair

(s,a) ∈ ϕ−1(x,u), the probability of transitioning from x to x′ under action u is the sum of the prob-

abilities of all the individual transitions in the original space that correspond to this count aggregation

transition. By using the transition probability in the product space, we obtain

p
(N)
ϕ (x′|x,u) =

∑
s′∈f−1(x′)

p(N)(s′|s,a) =
∑

s′∈f−1(x′)

N∏
n=1

pn(s
′
n|sn, an), (15)

for any (s,a) such that x = f(s) and u = gs(a).

Initial Distribution By using a state count representation for symmetric weakly coupled MDPs, we

know that 1⊤x = N , so the cardinality of the set can be obtained through multinomial expansion that

(s1 + s2 + · · · + sN )S =
∑

x1+x2+···+xS=N
N !

x1!x2!···xS !s
x1
1 sx2

2 · · · sxS

N . Intuitively, the term sx1
1 sx2

2 · · · sxS

N

can represent distributing N identical objects (in this case, sub-MDPs) into S distinct categories

(corresponding to different states). Thus, for each state count x, the number of distinct ways to

distribute N sub-MDPs into S states such that the counts match x is given by the multinomial

coefficient |f−1(x)| = N !
x1!x2!···xS ! . Given the initial distribution µ(N) is permutation invariant, the

probability of starting from state x in the initial distribution is

µ
(N)
f (x) =

∑
s∈f−1(x)

µ(N)(s) = |f−1(x)| · µ(N)(s̄) =
N !

x1!x2! · · ·xS !
· µ(N)(s̄),∀x, (16)

for any s̄ such that f(s̄) = x.

D Exact approaches based on linear programming

D.1 Optimal solutions to the GGF-WCMDP problem

First, we recall the dual linear programming (LP) methods to solve the MDP with discounted rewards

when the transition and reward functions are known. The formulation is based on the Bellman equation

for optimal policy, and is derived in Section 6.9.1 in detail by Puterman (2005).

The dual LP formulation for addressing the multi-objective joint MDP can be naturally extended

to the context of vector optimization:

v-max
∑

s∈S(N)

∑
a∈A(N)

r(s,a)q(s,a)

s.t.
∑

a∈A(N)

q(s,a)− γ
∑

s′∈S(N)

∑
a∈A(N)

q(s′,a)p(N)(s|s′,a) = µ(N)(s), ∀s ∈ S(N)

q(s,a) ≥ 0 ∀s ∈ S(N),∀a ∈ A(N)

, (17)

where any µ(N)(s) > 0 can be chosen, but we normalize the weights such that
∑

s∈S(N)

µ(N)(s) = 1 can

be interpreted as the probability of starting in a given state s.

We can now formally formulate the fair optimization problem by combining the GGF operator

(Section 2.2) and the scalarizing function on the reward vector in (17):

max GGFw[v]
s.t. v =

∑
s∈S(N)

∑
a∈A(N)

r(s,a)q(s,a)∑
a∈A(N)

q(s,a)− γ
∑

s′∈S(N)

∑
a∈A(N)

q(s′,a)p(N)(s|s′,a) = µ(N)(s), ∀s ∈ S(N)

q(s,a) ≥ 0 ∀s ∈ S(N),∀a ∈ A(N).

(18)
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By adding a permutation matrix Q to replace the permutation applied to the index set, GGFw[v] is

equivalently represented as

GGFw[v] = inf
Q:Q≥0,

∑
i Qij=1,∀j,

∑
j Qij=1,∀i

∑
ij

wiQijvj . (19)

This reformulation relies on w1 ≥ w2 ≥ · · · ≥ wN to confirm that at the infimum we have

min
σ

N∑
n=1

wnvσ(n). Indeed, if w1 is not assigned to the lowest element of v, then one can get a lower

value by transferring the assignment mass from where it is assigned to that element to improve the

solution. This form is obtained through LP duality on (19):

sup
ν,λ:λi+νj≤wivj ,∀i,j

N∑
i=1

λi +

N∑
j=1

νj ,

which leads to

max
ν,λ,q

N∑
i=1

λi +
N∑
j=1

νj

s.t. λi + νj ≤ wivj ∀i, j = 1, . . . , N.

Dual variable vectors are denoted by λ and ν. Combining the constraints in (18), we can get the

complete dual LP model with the GGF objective (GGF-LP) in (3).

D.2 Solving count aggregation MDP by the dual LP model

Since the exact model for the count aggregation MDP Mϕ is obtained (Appendix C), a dual LP model

is formulated following Section 6.9.1 of Puterman (2005), but with count aggregation representation

to solve (4):

max
∑

x∈S(N)
f

∑
u∈A(N)

gs

r̄ϕ(x,u)qϕ(x,u)

s.t.
∑

u∈A(N)
gs

qϕ(x,u)− γ
∑

x′∈S(N)
f

∑
u∈A(N)

gs

qϕ(x
′,u)p

(N)
ϕ (x|x′,u) = µ

(N)
f (x), ∀x ∈ S(N)

f

qϕ(x,u) ≥ 0 ∀x ∈ S(N)
f ,∀u ∈ A(N)

gs .

(20)

By choosing the initial distribution as µ
(N)
f , the optimal solution qϕ(x,u),∀x,u is equivalent to the

optimal solution to the corresponding weakly coupled MDP under the transformation ϕ.

E Model simulator

In the learning setting, the deep RL agent interacts with a simulated environment through a model

simulator (Algorithm 2), which leads to the next state x′ and the average reward r̄ϕ across all cou-

pled MDPs.

F Experimental design

F.1 Parameter setting

This section details the construction of the components used to generate the test instances based on

Akbarzadeh and Mahajan (2019), including the cost function, the transition matrix, and the reset

probability. This experiment uses a synthetic data generator implemented on our own that considers

a system with S states and binary actions (A = 2), where the two possible actions are to operate or

to replace. After generating the cost matrix of the size S(N) · A(N) ·N , we normalize the costs to the

range [0, 1] by dividing each entry by the maximum cost over all state action pairs. This ensures that

the discounted return always falls within the range [0, 1
1−γ ].
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Algorithm 2 Simulation of transition dynamics

Input: count state x, count action u, transition probability p(s′|s, a) and reward function r(s, a).
Initialize: next state x′ ← 0, average reward r̄ϕ ← 0
for s = 1, . . . , S do

for a = 1, . . . , A do
while us,a > 0 do

Sample the next state index s′ ∈ [S] according to the probability distribution p(·|s, a)
x′
s′ ← x′

s′ + 1

r̄ϕ ← r̄ϕ + 1
N
· r(s, a)

us,a ← us,a − 1
end while

end for
end for
Return: next state x′, average reward r̄ϕ

Cost function The cost function c(s) for s ∈ [S] can be defined in five ways: 1) Linear : c(s) = s− 1,

where the cost increases linearly with the state index; 2) Quadratic: c(s) = (s−1)2 with a more severe

penalty for higher states compared to the linear case; 3) Exponential : c(s) = es−1, which leads to

exponentially increasing costs; 4) Replacement Cost Constant Coefficient (RCCC): c(s) = 1.5(S− 1)2,

which is based on a constant ratio of 1.5 to the maximum quadratic cost; 5) Random: c(s) is randomly

generated within the range [0,1].

Transition function The transition matrix for the deterioration action is constructed as follows. Once

the machine reaches the S-th state, it remains in that worst state indefinitely until being successfully

reset by a replacement action. For the s-th state s ∈ [S − 1], the probability of remaining in the same

state at the next step is given by a model parameter pm ∈ [0, 1], and the probability of transitioning

to the (s+ 1)-th state is 1− pm.

Reset probability When a replacement occurs, there is a probability ps that the machine successfully

resets to the first state, and a corresponding probability 1−ps of failing to be repaired and following the

deterioration rule. In our experiments, we only consider a pure reset to the first state with probability 1.

F.2 Chosen cost structures

We consider two cost models to reflect real-world maintenance and operation dynamics:

(i) Exponential-RCCC : In this scenario, operational costs increase exponentially with age, and ex-

ceed replacement costs in the worst state to encourage replacements. This scenario fits the

operational dynamics of transportation fleets, such as drone batteries, where operational ineffi-

ciencies grow rapidly and can lead to significant damage to the drones.

(ii) Quadratic-RCCC : In contrast to scenario ii), operational costs increase quadratically with ma-

chine age, while replacement costs remain constant and always higher than operational costs.

This setup is typical for high-valued machinery, where replacement costs can be significant com-

pared to operational expenses.

F.3 Comparison of CP-DRL algorithms

As presented in Tables 3 and 4, the PPO algorithm consistently shows high-quality performance with

low variance compared to TD3 and SAC. This motivated us to choose PPO to implement the CP-DRL

algorithm.

F.4 Hyperparameters

In our experimental setup, we chose PPO algorithm to implement the count-proportion based archi-

tecture. The hidden layers are fully connected and the Tanh activation function is used. There are



Les Cahiers du GERAD G–2025–30 22

Table 3: GGF Scores (Exponential-RCCC)

N=2 N=3 N=4 N=5

PPO 14.11 ± 0.01 13.89 ± 0.14 13.59 ± 0.10 13.28 ± 0.03
TD3 11.83 ± 2.74 12.30 ± 1.14 12.63 ± 0.23 12.62 ± 0.12
SAC 14.00 ± 0.05 13.76 ± 0.03 13.50 ± 0.05 13.30 ± 0.02

Table 4: GGF Scores (Quadratic-RCCC)

N=2 N=3 N=4 N=5

PPO 16.14 ± 0.00 16.05 ± 0.00 15.94 ± 0.00 15.86 ± 0.02
TD3 15.98 ± 0.03 15.75 ± 0.12 15.56 ± 0.24 15.51 ± 0.34
SAC 16.06 ± 0.01 15.75 ± 0.08 15.69 ± 0.04 15.28 ± 0.05

two layers, with each layer consisting of 64 units. The learning rate for the actor is set to 5×10−4 and

the critic is set to 3 × 10−4. The Vanilla-DRL baseline uses the same network architecture as PPO,

with two hidden layers of 64 neurons each, but with a softmax output layer for its stochastic policy.

F.5 Additional results on LP solving times

The results in Tables 5 and 6 provide details on solving the GGF-LP model and the count dual LP

model on the Quadratic-RCCC instances as the number of machines N increases from 2 to 7. The

state size is set to S = 3, the action size to A = 2, and the resource to b = 1. The first block of the

tables shows the number of constraints and variables. The second block provides the model solving

times, with the standard deviations listed in parentheses. The results are based on 5 runs. Notice that

the LP solve time inludes pre-solve, the wallclock time, and post-solve times. The wallclock time is

listed separately to highlight the difference from the pure LP Solve time, but not included in the total

time calculation.

Table 5: Statistics for GGF-LP Model (3)

N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

# Constraints 13 36 97 268 765 2236

# Variables 31 114 413 1468 5115 17510

Data Build (s) 0.0019
(0.00)

0.0085
(0.00)

0.1076
(0.01)

1.3698
(0.05)

17.7180
(0.52)

320.0141
(16.85)

LP Build (s) 0.0028
(0.00)

0.0185
(0.01)

0.1449
(0.01)

1.4673
(0.08)

20.7464
(4.00)

392.0150
(33.97)

LP Solve (s) 0.0187
(0.02)

0.0212
(0.00)

0.1846
(0.06)

1.2914
(0.09)

13.0377
(0.63)

138.1272
(2.33)

Wallclock Solve∗ (s) 0.0026
(0.00)

0.0018
(0.00)

0.0115
(0.00)

0.0493
(0.00)

0.7849
(0.16)

13.3167
(0.19)

LP Extract (s) 0.0022
(0.00)

0.0019
(0.00)

0.0044
(0.00)

0.0158
(0.00)

0.0711
(0.01)

0.2828
(0.03)

Total Time (s) 0.0256
(0.03)

0.0500
(0.01)

0.4416
(0.06)

4.1443
(0.07)

51.5732
(3.87)

864.4391
(56.75)

∗Wall clock solve time is included in the LP Solve time.
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Table 6: Statistics for Count Dual LP Model (D.2)

N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

# Constraints 6 10 15 21 28 36

# Variables 24 40 60 84 112 144

Data Build (s) 0.0035
(0.00)

0.0134
(0.00)

0.1306
(0.01)

1.4401
(0.01)

17.4080
(0.40)

204.4550
(4.49)

LP Build (s) 0.0018
(0.00)

0.0031
(0.00)

0.0056
(0.01)

0.0081
(0.00)

0.0297
(0.01)

0.0501
(0.01)

LP Solve (s) 0.0375
(0.02)

0.0362
(0.02)

0.0466
(0.00)

0.0386
(0.01)

0.0745
(0.01)

0.1634
(0.06)

Wallclock Solve∗ (s) 0.0034
(0.00)

0.0053
(0.00)

0.0031
(0.00)

0.0026
(0.00)

0.0034
(0.00)

0.0105
(0.00)

LP Extract (s) 0.0053
(0.00)

0.0025
(0.00)

0.0687
(0.00)

0.0026
(0.00)

0.0051
(0.00)

0.0209
(0.00)

Total Time (s) 0.0481
(0.02)

0.0552
(0.02)

0.2515
(0.13)

1.4894
(0.01)

17.5173
(0.42)

204.6893
(4.44)

∗Wall clock solve time is included in the LP Solve time.
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